Ian Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8200424/publications.pdf

Version: 2024-02-01

417 papers

42,556 citations

15880 67 h-index 164 g-index

460 all docs

460 docs citations

460 times ranked 25102 citing authors

#	Article	IF	CITATIONS
1	Improving I/O Performance for Exascale Applications Through Online Data Layout Reorganization. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 878-890.	4.0	10
2	Data-Driven Cloud Clustering via a Rotationally Invariant Autoencoder. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60 , $1-25$.	2.7	7
3	The Exascale Framework for High Fidelity coupled Simulations (EFFIS): Enabling whole device modeling in fusion science. International Journal of High Performance Computing Applications, 2022, 36, 106-128.	2.4	11
4	High-Throughput Virtual Screening and Validation of a SARS-CoV-2 Main Protease Noncovalent Inhibitor. Journal of Chemical Information and Modeling, 2022, 62, 116-128.	2.5	54
5	MemXCT: Design, Optimization, Scaling, and Reproducibility of X-Ray Tomography Imaging. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 2014-2031.	4.0	3
6	Deep Neural Network Training with Distributed K-FAC. IEEE Transactions on Parallel and Distributed Systems, 2022, , 1-1.	4.0	0
7	Braid-DB: Toward Al-Driven Science with Machine Learning Provenance. Communications in Computer and Information Science, 2022, , 247-261.	0.4	3
8	<i>BraggNN</i> : fast X-ray Bragg peak analysis using deep learning. IUCrJ, 2022, 9, 104-113.	1.0	19
9	Efficient high-dimensional variational data assimilation with machine-learned reduced-order models. Geoscientific Model Development, 2022, 15, 3433-3445.	1.3	4
10	A Combined Machine Learning and High-Energy X-ray Diffraction Approach to Understanding Liquid and Amorphous Metal Oxides. Journal of the Physical Society of Japan, 2022, 91, .	0.7	7
11	Improving the Accuracy of Composite Methods: A G4MP2 Method with G4-like Accuracy and Implications for Machine Learning. Journal of Physical Chemistry A, 2022, 126, 4528-4536.	1.1	3
12	End-to-end online performance data capture and analysis for scientific workflows. Future Generation Computer Systems, 2021, 117, 387-400.	4.9	13
13	Translating the grid: How a translational approach shaped the development of grid computing. Journal of Computational Science, 2021, 52, 101214.	1.5	4
14	DLHub: Simplifying publication, discovery, and use of machine learning models in science. Journal of Parallel and Distributed Computing, 2021, 147, 64-76.	2.7	17
15	Enabling deeper learning on big data for materials informatics applications. Scientific Reports, 2021, 11 , 4244.	1.6	29
16	Automated Development of Molten Salt Machine Learning Potentials: Application to LiCl. Journal of Physical Chemistry Letters, 2021, 12, 4278-4285.	2.1	26
17	$2\hat{a}$ €²-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
18	Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models. Journal of Physical Chemistry A, 2021, 125, 5990-5998.	1.1	10

#	Article	IF	Citations
19	Online data analysis and reduction: An important Co-design motif for extreme-scale computers. International Journal of High Performance Computing Applications, 2021, 35, 617-635.	2.4	6
20	Design and Evaluation of a Simple Data Interface for Efficient Data Transfer across Diverse Storage. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 2021, 6, 1-25.	0.8	5
21	Coding the Computing Continuum: Fluid Function Execution in Heterogeneous Computing Environments., 2021,,.		14
22	Models and Processes to Extract Drug-like Molecules From Natural Language Text. Frontiers in Molecular Biosciences, 2021, 8, 636077.	1.6	1
23	3d Autoencoders For Feature Extraction In X-Ray Tomography. , 2021, , .		3
24	Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.	5.0	143
25	Co-design Center for Exascale Machine Learning Technologies (ExaLearn). International Journal of High Performance Computing Applications, 2021, 35, 598-616.	2.4	6
26	FTK: A Simplicial Spacetime Meshing Framework for Robust and Scalable Feature Tracking. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 3463-3480.	2.9	7
27	Challenges and Advances in Information Extraction from Scientific Literature: a Review. Jom, 2021, 73, 3383-3400.	0.9	11
28	Bootstrapping in-situ workflow auto-tuning via combining performance models of component applications. , 2021, , .		7
29	Open-source Software Sustainability Models: Initial White Paper From the Informatics Technology for Cancer Research Sustainability and Industry Partnership Working Group. Journal of Medical Internet Research, 2021, 23, e20028.	2.1	2
30	A Serverless Framework for Distributed Bulk Metadata Extraction., 2021,,.		9
31	Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2, 873-885.	6.2	263
32	Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geoscientific Model Development, 2021, 14, 6355-6372.	1.3	21
33	KAISA., 2021,,.		9
34	Bridging Data Center Al Systems with Edge Computing for Actionable Information Retrieval., 2021, , .		13
35	Understanding Effectiveness of Multi-Error-Bounded Lossy Compression for Preserving Ranges of Interest in Scientific Analysis. , 2021, , .		0
36	Colmena: Scalable Machine-Learning-Based Steering of Ensemble Simulations for High Performance Computing., 2021,,.		20

#	Article	IF	Citations
37	Uncertainty-Informed Deep Transfer Learning of Perfluoroalkyl and Polyfluoroalkyl Substance Toxicity. Journal of Chemical Information and Modeling, 2021, 61, 5793-5803.	2.5	12
38	Optimizing Multi-Range based Error-Bounded Lossy Compression for Scientific Datasets. , 2021, , .		2
39	Using the FACE-IT portal and workflow engine for operational food quality prediction and assessment: An application to mussel farms monitoring in the Bay of Napoli, Italy. Future Generation Computer Systems, 2020, 110, 453-467.	4.9	13
40	Prevalence of Inherited Mutations in Breast Cancer Predisposition Genes among Women in Uganda and Cameroon. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 359-367.	1.1	36
41	Atlas of Transcription Factor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types. Cell Reports, 2020, 32, 108029.	2.9	28
42	Exascale applications: skin in the game. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190056.	1.6	53
43	Crowd-Sourced Data and Analysis Tools for Advancing the Chemical Vapor Deposition of Graphene: Implications for Manufacturing. ACS Applied Nano Materials, 2020, 3, 10144-10155.	2.4	5
44	A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7071-7081.	3.3	63
45	SciNER: Extracting Named Entities fromÂScientific Literature. Lecture Notes in Computer Science, 2020, , 308-321.	1.0	8
46	Convolutional Neural Network Training with Distributed K-FAC., 2020,,.		11
47	funcX: A Federated Function Serving Fabric for Science. , 2020, , .		94
48	Characterization and identification of HPC applications at leadership computing facility. , 2020, , .		12
49	Feature-preserving Lossy Compression for In Situ Data Analysis. , 2020, , .		6
50	TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 422.	0.8	79
51	OAuth SSH with Globus Auth. , 2020, , .		3
52	An Open Ecosystem for Pervasive Use of Persistent Identifiers. , 2020, , .		5
53	Parsl. , 2019, , .		138
54	IRNet., 2019,,.		23

#	Article	IF	Citations
55	Publishing and Serving Machine Learning Models with DLHub. , 2019, , .		4
56	Petrel., 2019,,.		7
57	Machine learning prediction of accurate atomization energies of organic molecules from low-fidelity quantum chemical calculations. MRS Communications, 2019, 9, 891-899.	0.8	38
58	Building a Wide-Area File Transfer Performance Predictor: An Empirical Study. Lecture Notes in Computer Science, 2019, , 56-78.	1.0	1
59	Reproducible big data science: A case study in continuous FAIRness. PLoS ONE, 2019, 14, e0213013.	1.1	29
60	Throughput Analytics of Data Transfer Infrastructures. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 20-40.	0.2	5
61	Data automation at light sources. AIP Conference Proceedings, 2019, , .	0.3	8
62	A Codesign Framework for Online Data Analysis and Reduction. , 2019, , .		11
63	Scientific Image Restoration Anywhere. , 2019, , .		9
64	Deep Learning Accelerated Light Source Experiments. , 2019, , .		14
65	ParaOpt: Automated Application Parameterization and Optimization for the Cloud., 2019,,.		8
66	Serverless Science for Simple, Scalable, and Shareable Scholarship., 2019, , .		2
67	DLHub: Model and Data Serving for Science. , 2019, , .		36
68	A data ecosystem to support machine learning in materials science. MRS Communications, 2019, 9, 1125-1133.	0.8	112
69	Workflow-based automatic processing for Internet of Floating Things crowdsourced data. Future Generation Computer Systems, 2019, 94, 103-119.	4.9	15
70	HACC Cosmological Simulations: First Data Release. Astrophysical Journal, Supplement Series, 2019, 244, 17.	3.0	17
71	StormSeeker: A Machine-Learning-Based Mediterranean Storm Tracer. Lecture Notes in Computer Science, 2019, , 444-456.	1.0	3
72	Towards High Performance Data Analytics for Climate Change. Lecture Notes in Computer Science, 2019, , 240-257.	1.0	2

#	Article	IF	CITATIONS
73	Scalable pCT Image Reconstruction Delivered as a Cloud Service. IEEE Transactions on Cloud Computing, 2018, 6, 182-195.	3.1	15
74	Research Infrastructure for the Safe Analysis of Sensitive Data. Annals of the American Academy of Political and Social Science, 2018, 675, 102-120.	0.8	19
75	Advance reservation access control using software-defined networking and tokens. Future Generation Computer Systems, 2018, 79, 225-234.	4.9	12
76	Scaling Deep Learning for Cancer with Advanced Workflow Storage Integration. , 2018, , .		12
77	Coupling Exascale Multiphysics Applications: Methods and Lessons Learned. , 2018, , .		20
78	Profiling and Predicting Application Performance on the Cloud. , 2018, , .		15
79	Strategies for accelerating the adoption of materials informatics. MRS Bulletin, 2018, 43, 683-689.	1.7	29
80	DYNAMO: Distributed Leisure Yacht-Carried Sensor-Network for Atmosphere and Marine Data Crowdsourcing Applications. , 2018, , .		17
81	Matminer: An open source toolkit for materials data mining. Computational Materials Science, 2018, 152, 60-69.	1.4	446
82	Toward a smart data transfer node. Future Generation Computer Systems, 2018, 89, 10-18.	4.9	14
83	Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Molecular Systems Design and Engineering, 2018, 3, 819-825.	1.7	149
84	Globus Platform Services for Data Publication. , 2018, , .		20
85	Transferring a petabyte in a day. Future Generation Computer Systems, 2018, 88, 191-198.	4.9	28
86	Performance, Resilience, and Security in Moving Data from the Fog to the Cloud: The DYNAMO Transfer Framework Approach. Lecture Notes in Computer Science, 2018, , 197-208.	1.0	6
87	The Modern Research Data Portal: a design pattern for networked, data-intensive science. PeerJ Computer Science, 2018, 4, e144.	2.7	24
88	BioWorkbench: a high-performance framework for managing and analyzing bioinformatics experiments. PeerJ, 2018, 6, e5551.	0.9	11
89	Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155, 240-254.	3.2	403
90	Trace: a high-throughput tomographic reconstruction engine for large-scale datasets. Advanced Structural and Chemical Imaging, 2017, 3, 6.	4.0	22

#	Article	IF	Citations
91	Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S Water Resources Research, 2017, 53, 3878-3895.	1.7	256
92	Software Defined Cyberinfrastructure., 2017,,.		7
93	Globus., 2017,,.		12
94	Explaining Wide Area Data Transfer Performance., 2017,,.		26
95	Skluma., 2017, , .		7
96	Globus., 2017,,.		8
97	Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 2017, 155, 269-288.	3.2	261
98	Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems, 2017, 155, 200-212.	3.2	143
99	Towards a Hybrid Human-Computer Scientific Information Extraction Pipeline. , 2017, , .		18
100	Computing Just What You Need: Online Data Analysis and Reduction at Extreme Scales. , 2017, , .		44
101	Real-Time Data Analysis and Autonomous Steering of Synchrotron Light Source Experiments. , 2017, , .		21
102	A Mathematical Programming- and Simulation-Based Framework to Evaluate Cyberinfrastructure Design Choices. , $2017, , .$		9
103	Processing of crowd-sourced data from an internet of floating things. , 2017, , .		6
104	Predictive Big Data Analytics: A Study of Parkinson's Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations. PLoS ONE, 2016, 11, e0157077.	1.1	94
105	Optimization of tomographic reconstruction workflows on geographically distributed resources. Journal of Synchrotron Radiation, 2016, 23, 997-1005.	1.0	11
106	An Ensemble-Based Recommendation Engine for Scientific Data Transfers. , 2016, , .		1
107	I'll take that to go: Big data bags and minimal identifiers for exchange of large, complex datasets. , 2016, , .		33
108	Globus auth: A research identity and access management platform. , 2016, , .		43

#	Article	IF	Citations
109	Measurement-based performance profiles and dynamics of UDT over dedicated connections., 2016,,.		1
110	Improving Data Transfer Throughput with Direct Search Optimization. , 2016, , .		6
111	Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database. Journal of Chemical Education, 2016, 93, 1561-1568.	1.1	17
112	Globus., 2016,,.		33
113	A Hybrid Human-computer Approach to the Extraction of Scientific Facts from the Literature. Procedia Computer Science, 2016, 80, 386-397.	1.2	18
114	Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, 10882.	5.8	113
115	Integrative genomics analyses unveil downstream biological effectors of disease-specific polymorphisms buried in intergenic regions. Npj Genomic Medicine, $2016,1,.$	1.7	19
116	The Materials Data Facility: Data Services to Advance Materials Science Research. Jom, 2016, 68, 2045-2052.	0.9	215
117	WaComM: A Parallel Water Quality Community Model for Pollutant Transport and Dispersion Operational Predictions., 2016,,.		22
118	An in-memory based framework for scientific data analytics. , 2016, , .		11
119	The Discovery Cloud: Accelerating and Democratizing Research on a Global Scale. , 2016, , .		5
120	Globus Nexus: A Platform-as-a-Service provider of research identity, profile, and group management. Future Generation Computer Systems, 2016, 56, 571-583.	4.9	29
121	A community-oriented workflow reuse and recommendation technique. International Journal of Business Process Integration and Management, 2015, 7, 197.	0.2	0
122	Big Data Remote Access Interfaces for Light Source Science., 2015,,.		10
123	FACEâ€IT: A science gateway for food security research. Concurrency Computation Practice and Experience, 2015, 27, 4423-4436.	1.4	25
124	The Globus Galaxies platform: delivering science gateways as a service. Concurrency Computation Practice and Experience, 2015, 27, 4344-4360.	1.4	40
125	The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 2015, 8, 261-277.	1.3	190
126	Toward Interlanguage Parallel Scripting for Distributed-Memory Scientific Computing., 2015,,.		2

#	Article	IF	CITATIONS
127	Choosing experiments to accelerate collective discovery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14569-14574.	3.3	146
128	Globus Data Publication as a Service: Lowering Barriers to Reproducible Science., 2015,,.		34
129	Cost-Aware Cloud Provisioning. , 2015, , .		35
130	Globus platformâ€asâ€aâ€service for collaborative science applications. Concurrency Computation Practice and Experience, 2015, 27, 290-305.	1.4	46
131	Big biomedical data as the key resource for discovery science. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1126-1131.	2.2	70
132	Zodiac: A Comprehensive Depiction of Genetic Interactions in Cancer by Integrating TCGA Data. Journal of the National Cancer Institute, 2015, 107, .	3.0	27
133	Jetstream. , 2015, , .		13
134	Cost-Aware Elastic Cloud Provisioning for Scientific Workloads. , 2015, , .		22
135	Efficient and Secure Transfer, Synchronization, and Sharing of Big Data. IEEE Cloud Computing, 2014, 1, 46-55.	5. 3	70
136	XSEDE: Accelerating Scientific Discovery. Computing in Science and Engineering, 2014, 16, 62-74.	1.2	2,790
137	Language Features for Scalable Distributed-Memory Dataflow Computing. , 2014, , .		12
138	Globus Nexus: Research Identity, Profile, and Group Management as a Service. , 2014, , .		4
139	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	3.3	795
140	Compiler Techniques for Massively Scalable Implicit Task Parallelism., 2014,,.		31
141	NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures. Translational Oncology, 2014, 7, 556-569.	1.7	69
142	Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8776-8781.	3.3	68
143	Ophidia: A full software stack for scientific data analytics. , 2014, , .		12
144	Experiences building Globus Genomics: a nextâ€generation sequencing analysis service using Galaxy, Globus, and Amazon Web Services. Concurrency Computation Practice and Experience, 2014, 26, 2266-2279.	1.4	60

#	Article	IF	Citations
145	â€~N-of-1- <i>pathways</i> ' unveils personal deregulated mechanisms from a single pair of RNA-Seq samples: towards precision medicine. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 1015-1025.	2.2	42
146	Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses. Journal of Biomedical Informatics, 2014, 49, 119-133.	2.5	64
147	The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling and Software, 2014, 62, 509-516.	1.9	101
148	Big Data Staging with MPI-IO for Interactive X-ray Science. , 2014, , .		9
149	Ophidia: Toward Big Data Analytics for eScience. Procedia Computer Science, 2013, 18, 2376-2385.	1.2	45
150	Unilateral Carbon Taxes, Border Tax Adjustments and Carbon Leakage. Theoretical Inquiries in Law, 2013, 14, .	0.1	5
151	Experiences in building a next-generation sequencing analysis service using galaxy, globus online and Amazon web service. , 2013 , , .		14
152	Distributed tools deployment and management for multiple galaxy instances in globus genomics. , 2013, , .		0
153	Provenance traces of the swift parallel scripting system. , 2013, , .		3
154	MTC envelope., 2013,,.		4
155	Turbine: A Distributed-memory Dataflow Engine for High Performance Many-task Applications. Fundamenta Informaticae, 2013, 128, 337-366.	0.3	23
156	Globus Nexus: An identity, profile, and group management platform for science gateways and other collaborative science applications. , 2013 , , .		21
157			
	Addressing data access needs of the long-tail distribution of geoscientists., 2012, , .		5
158	Design and analysis of data management in scalable parallel scripting. , 2012, , .		14
158		6.0	
	Design and analysis of data management in scalable parallel scripting. , 2012, , .	6.0	14
159	Design and analysis of data management in scalable parallel scripting., 2012,,. Shining Light into Black Boxes. Science, 2012, 336, 159-160. MTCProv: a practical provenance query framework for many-task scientific computing. Distributed		14 154

#	Article	IF	Citations
163	SOLE: Linking Research Papers with Science Objects. Lecture Notes in Computer Science, 2012, , 203-208.	1.0	17
164	ServiceMap: Providing Map and GPS Assistance to Service Composition in Bioinformatics., 2011,,.		20
165	Toward Semantics Empowered Biomedical Web Services. , 2011, , .		16
166	Providing Map and GPS Assistance to Service Composition in Bioinformatics., 2011,,.		7
167	Recommend-As-You-Go: A Novel Approach Supporting Services-Oriented Scientific Workflow Reuse. , 2011, , .		63
168	Reshaping Text Data for Efficient Processing on Amazon EC2. Scientific Programming, 2011, 19, 133-145.	0.5	2
169	Message from the chairpersons. , 2011, , .		0
170	Enabling collaborative research using the Biomedical Informatics Research Network (BIRN). Journal of the American Medical Informatics Association: JAMIA, 2011, 18, 416-422.	2.2	56
171	Swift: A language for distributed parallel scripting. Parallel Computing, 2011, 37, 633-652.	1.3	319
172	Globus Online: Accelerating and Democratizing Science through Cloud-Based Services. IEEE Internet Computing, 2011, 15, 70-73.	3.2	231
173	Editors' Message. Journal of Grid Computing, 2011, 9, 1-2.	2.5	3
174	Provenance management in Swift. Future Generation Computer Systems, 2011, 27, 775-780.	4.9	17
175	Moving huge scientific datasets over the Internet. Concurrency Computation Practice and Experience, 2011, 23, 2404-2420.	1.4	2
176	AME., 2011,,.		11
177	A distributed look-up architecture for text mining applications using mapreduce., 2011, 2011, .		7
178	Managed GridFTP., 2011,,.		5
179	Improving the efficiency of subset queries on raster images. , 2011, , .		4
180	Exploring provenance in high performance scientific computing. , 2011, , .		5

#	Article	IF	CITATIONS
181	In search of simplicity: a selfâ€organizing group communication overlay. Concurrency Computation Practice and Experience, 2010, 22, 788-815.	1.4	O
182	A comparison of using Taverna and BPEL in building scientific workflows: the case of caGrid. Concurrency Computation Practice and Experience, 2010, 22, 1098-1117.	1.4	13
183	CIM-EARTH: Framework and Case Study. B E Journal of Economic Analysis and Policy, 2010, 10, .	0.5	5
184	Middleware support for many-task computing. Cluster Computing, 2010, 13, 291-314.	3.5	35
185	Network Analysis of Scientific Workflows: A Gateway to Reuse. Computer, 2010, 43, 54-61.	1.2	68
186	CaGrid Workflow Toolkit: A taverna based workflow tool for cancer grid. BMC Bioinformatics, 2010, 11, 542.	1.2	29
187	Globalâ€scale distributed I/O with ParaMEDIC. Concurrency Computation Practice and Experience, 2010, 22, 2266-2281.	1.4	O
188	An adaptive strategy for scheduling data-intensive applications in Grid environments. , 2010, , .		3
189	NONUS: A No-Onus Platform for Generating Grant Reports. , 2010, , .		O
190	Trade and Carbon Taxes. American Economic Review, 2010, 100, 465-469.	4.0	155
190	Trade and Carbon Taxes. American Economic Review, 2010, 100, 465-469. Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing, and Provisioning., 2010,, 595-618.	4.0	155 11
	Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing,	4.0	
191	Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing, and Provisioning., 2010,, 595-618.	0.2	11
191	Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing, and Provisioning., 2010, , 595-618. Scheduling many-task workloads on supercomputers: Dealing with trailing tasks., 2010, , . GridFTP GUI: An Easy and Efficient Way to Transfer Data in Grid. Lecture Notes of the Institute for		11
191 192 193	Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing, and Provisioning., 2010,, 595-618. Scheduling many-task workloads on supercomputers: Dealing with trailing tasks., 2010,,. GridFTP GUI: An Easy and Efficient Way to Transfer Data in Grid. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010,, 57-66. ADEM: Automating deployment and management of application software on the Open Science Grid.,		11 19 4
191 192 193	Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing, and Provisioning., 2010,, 595-618. Scheduling many-task workloads on supercomputers: Dealing with trailing tasks., 2010,,. GridFTP GUI: An Easy and Efficient Way to Transfer Data in Grid. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010,, 57-66. ADEM: Automating deployment and management of application software on the Open Science Grid., 2009,,.		11 19 4 6
191 192 193 194	Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing, and Provisioning., 2010, , 595-618. Scheduling many-task workloads on supercomputers: Dealing with trailing tasks., 2010, , . GridFTP GUI: An Easy and Efficient Way to Transfer Data in Grid. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 57-66. ADEM: Automating deployment and management of application software on the Open Science Grid., 2009, , . Wrap Scientific Applications as WSRF Grid Services Using gRAVI., 2009, , . Experiences of On-Demand Execution for Large Scale Parameter Sweep Applications on OSG by Swift.,		11 19 4 6

#	Article	IF	CITATIONS
199	Parallel Scripting for Applications at the Petascale and Beyond. Computer, 2009, 42, 50-60.	1.2	78
200	A Flexible Attribute Based Access Control Method for Grid Computing. Journal of Grid Computing, 2009, 7, 169-180.	2. 5	86
201	Virtual Infrastructure Management in Private and Hybrid Clouds. IEEE Internet Computing, 2009, 13, 14-22.	3.2	715
202	The quest for scalable support of data-intensive workloads in distributed systems. , 2009, , .		40
203	How Do I Model State? Let Me Count the Ways. Queue, 2009, 7, 54-55.	0.8	0
204	Tracking provenance in a virtual data grid. Concurrency Computation Practice and Experience, 2008, 20, 565-575.	1.4	55
205	e-Science, caGrid, and Translational Biomedical Research. Computer, 2008, 41, 58-66.	1.2	15
206	Terascale turbulence computation using the FLASH3 application framework on the IBM Blue Gene/L system. IBM Journal of Research and Development, 2008, 52, 127-136.	3.2	44
207	Cloud Computing and Grid Computing 360-Degree Compared. , 2008, , .		1,820
208	Many-task computing for grids and supercomputers. , 2008, , .		180
208	Many-task computing for grids and supercomputers., 2008,,. Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale Collaboration. IEEE Internet Computing, 2008, 12, 61-68.	3.2	180
	Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale	3.2	
209	Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale Collaboration. IEEE Internet Computing, 2008, 12, 61-68.		18
209	Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale Collaboration. IEEE Internet Computing, 2008, 12, 61-68. Provisioning for Dynamic Instantiation of Community Services. IEEE Internet Computing, 2008, 12, 29-36.		18 5
209 210 211	Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale Collaboration. IEEE Internet Computing, 2008, 12, 61-68. Provisioning for Dynamic Instantiation of Community Services. IEEE Internet Computing, 2008, 12, 29-36. Orchestrating caGrid Services in Taverna., 2008,,		18 5 3
209 210 211 212	Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale Collaboration. IEEE Internet Computing, 2008, 12, 61-68. Provisioning for Dynamic Instantiation of Community Services. IEEE Internet Computing, 2008, 12, 29-36. Orchestrating caGrid Services in Taverna., 2008,, Build Grid Enabled Scientific Workflows Using gRAVI and Taverna., 2008,,		18 5 3
209 210 211 212 213	Combining the Power of Taverna and caGrid: Scientific Workflows that Enable Web-Scale Collaboration. IEEE Internet Computing, 2008, 12, 61-68. Provisioning for Dynamic Instantiation of Community Services. IEEE Internet Computing, 2008, 12, 29-36. Orchestrating caGrid Services in Taverna., 2008,,. Build Grid Enabled Scientific Workflows Using gRAVI and Taverna., 2008,,. Communicating Security Assertions over the GridFTP Control Channel., 2008,,.		18 5 3 4

#	Article	IF	CITATIONS
217	How do I model state?. Communications of the ACM, 2008, 51, 34-41.	3.3	17
218	Accelerating large-scale data exploration through data diffusion. , 2008, , .		55
219	Toward loosely coupled programming on petascale systems. , 2008, , .		63
220	A Scalable Cluster Algorithm for Internet Resources. , 2007, , .		4
221	Falkon., 2007,,.		205
222	GridCopy: Moving Data Fast on the Grid. , 2007, , .		9
223	Swift: Fast, Reliable, Loosely Coupled Parallel Computation. , 2007, , .		243
224	Enabling distributed petascale science. Journal of Physics: Conference Series, 2007, 78, 012020.	0.3	9
225	Harnessing Multicore Processors for High-Speed Secure Transfer. , 2007, , .		1
226	HAND: Highly Available Dynamic Deployment Infrastructure for Globus Toolkit 4. Parallel, Distributed and Network-based Processing, Proceedings of the Euromicro Workshop on, 2007, , .	0.0	38
227	Usage SLA-based scheduling in Grids. Concurrency Computation Practice and Experience, 2007, 19, 945-963.	1.4	10
228	The Design, Usage, and Performance of GRUBER: A Grid Usage Service Level Agreement based BrokERing Infrastructure. Journal of Grid Computing, 2007, 5, 99-126.	2.5	20
229	A Tool for Prioritizing DAGMan Jobs and its Evaluation. Journal of Grid Computing, 2007, 5, 197-212.	2.5	53
230	Using multiple grid resources for bioinformatics applications in GADU., 2006,,.		3
231	Service-Oriented Science: Scaling eScience Impact. , 2006, , .		5
232	Service-Oriented Science: Scaling eScience Impact. , 2006, , .		1
233	Overhead Matters: A Model for Virtual Resource Management. , 2006, , .		41
234	Statistical data reduction for efficient application performance monitoring. , 2006, , .		10

#	Article	IF	CITATIONS
235	Blueprint and First Experiences Bridging Hardware Virtualization and Global Grids for Advanced Scientific Computing: Designing and Building a Global Edge Services Framework (ESF) for OSG, EGEE, and LCG., 2006,,.		O
236	Report on the International Provenance and Annotation Workshop. SIGMOD Record, 2006, 35, 51-53.	0.7	19
237	A two-way street to science's future. Nature, 2006, 440, 419-419.	13.7	43
238	The Design, Performance, and Use of DiPerF: An automated Distributed PERformance evaluation Framework. Journal of Grid Computing, 2006, 4, 287-309.	2.5	18
239	Globus Toolkit Version 4: Software for Service-Oriented Systems. Journal of Computer Science and Technology, 2006, 21, 513-520.	0.9	473
240	Scaling System-Level Science: Scientific Exploration and IT Implications. Computer, 2006, 39, 31-39.	1.2	65
241	Virtual data Grid middleware services for data-intensive science. Concurrency Computation Practice and Experience, 2006, 18, 595-608.	1.4	17
242	Virtual Clusters for Grid Communities. , 2006, , .		144
243	XIOPerf: A Tool for Evaluating Network Protocols. , 2006, , .		1
244	Exposing UDDI Service Descriptions and Their Metadata Annotations as WS-Resources. , 2006, , .		11
245	Virtual playgrounds: managing virtual resources in the grid. , 2006, , .		0
246	Applying the Virtual Data Provenance Model. Lecture Notes in Computer Science, 2006, , 148-161.	1.0	41
247	An Opportunistic Algorithm for Scheduling Workflows on Grids. , 2006, , 1-12.		6
248	Poster reception—Harnessing grid resources to enable the dynamic analysis of large astronomy datasets., 2006,,.		3
249	Describing the Elephant: The Different Faces of IT as Service. Queue, 2005, 3, 26-29.	0.8	36
250	GNARE: an environment for grid-based high-throughput genome analysis. , 2005, , .		16
251	Data Grid tools: enabling science on big distributed data. Journal of Physics: Conference Series, 2005, 16, 571-575.	0.3	16
252	Service-Oriented Science, Science, 2005, 308, 814-817.	6.0	374

#	Article	IF	CITATIONS
253	Gnare: Automated System For High-Throughput Genome Analysis With Grid Computational Backend. Journal of Clinical Monitoring and Computing, 2005, 19, 361-369.	0.7	19
254	Virtual Workspaces: Achieving Quality of Service and Quality of Life in the Grid. Scientific Programming, 2005, 13, 265-275.	0.5	179
255	XDTM: The XML Data Type and Mapping for Specifying Datasets. Lecture Notes in Computer Science, 2005, , 495-505.	1.0	12
256	A notation and system for expressing and executing cleanly typed workflows on messy scientific data. SIGMOD Record, 2005, 34, 37-43.	0.7	82
257	The Earth System Grid: Supporting the Next Generation of Climate Modeling Research. Proceedings of the IEEE, 2005, 93, 485-495.	16.4	130
258	Modeling and Managing State in Distributed Systems: The Role of OGSI and WSRF. Proceedings of the IEEE, 2005, 93, 604-612.	16.4	99
259	Agreement-Based Resource Management. Proceedings of the IEEE, 2005, 93, 631-643.	16.4	68
260	GangSim: a simulator for grid scheduling studies. , 2005, , .		74
261	Improving parallel data transfer times using predicted variances in shared networks. , 2005, , .		13
262	GRUBER: A Grid Resource Usage SLA Broker. Lecture Notes in Computer Science, 2005, , 465-474.	1.0	35
263	Experiences in Running Workloads over Grid3. Lecture Notes in Computer Science, 2005, , 274-286.	1.0	17
264	End-to-end quality of service for high-end applications. Computer Communications, 2004, 27, 1375-1388.	3.1	142
265	Predicting application run times with historical information. Journal of Parallel and Distributed Computing, 2004, 64, 1007-1016.	2.7	98
266	Concepts and Architecture. , 2004, , 37-63.		23
267	Distributed Telepresence. , 2004, , 81-93.		4
268	The Open Grid Services Architecture. , 2004, , 215-257.		92
269	Resource and Service Management. , 2004, , 259-283.		10
270	The Grid: Beyond the Hype. Lecture Notes in Computer Science, 2004, , 1-1.	1.0	1

#	Article	IF	CITATIONS
271	Simulation Studies of Computation and Data Scheduling Algorithms for Data Grids. Journal of Grid Computing, 2003, 1, 53-62.	2.5	139
272	Editors' Message. Journal of Grid Computing, 2003, 1, 1-2.	2.5	7
273	High-performance remote access to climate simulation data: a challenge problem for data grid technologies. Parallel Computing, 2003, 29, 1335-1356.	1.3	45
274	MPICH-G2: A Grid-enabled implementation of the Message Passing Interface. Journal of Parallel and Distributed Computing, 2003, 63, 551-563.	2.7	486
275	The Grid: Computing without Bounds. Scientific American, 2003, 288, 78-85.	1.0	91
276	On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing. Lecture Notes in Computer Science, 2003, , 118-128.	1.0	279
277	The grid grows up. IEEE Internet Computing, 2003, 7, 24-26.	3.2	13
278	Data integration in a bandwidth-rich world. Communications of the ACM, 2003, 46, 50-57.	3.3	52
279	Security and Certification Issues in Grid Computing. IFIP Advances in Information and Communication Technology, 2003, , 47-55.	0.5	2
280	The Grid: A New Infrastructure for 21st Century Science. Physics Today, 2002, 55, 42-47.	0.3	388
281	GENERAL SCIENCE: Unexpected Consequences of Connections. Science, 2002, 297, 1124-1125.	6.0	2
281	GENERAL SCIENCE: Unexpected Consequences of Connections. Science, 2002, 297, 1124-1125. Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey., 2002,,.	6.0	35
		6.0	
282	Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey., 2002,,.	1.0	35
282	Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey., 2002,,. Giggle: A Framework for Constructing Scalable Replica Location Services., 2002,,. SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating Resource Management in		35 121
282 283 284	Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey., 2002,,. Giggle: A Framework for Constructing Scalable Replica Location Services., 2002,,. SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating Resource Management in Distributed Systems. Lecture Notes in Computer Science, 2002,, 153-183.	1.0	35 121 250
282 283 284 285	Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey., 2002,,. Giggle: A Framework for Constructing Scalable Replica Location Services., 2002,,. SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating Resource Management in Distributed Systems. Lecture Notes in Computer Science, 2002,, 153-183. Grid technologies empowering drug discovery. Drug Discovery Today, 2002, 7, s176-s180. Community software development with the Astrophysics Simulation Collaboratory. Concurrency	1.0	35 121 250 31

#	Article	IF	Citations
289	Data management and transfer in high-performance computational grid environments. Parallel Computing, 2002, 28, 749-771.	1.3	467
290	Grid services for distributed system integration. Computer, 2002, 35, 37-46.	1.2	1,644
291	Condor-G: A Computation Management Agent for Multi-Institutional Grids. Cluster Computing, 2002, 5, 237-246.	3.5	557
292	The Astrophysics Simulation Collaboratory: A Science Portal Enabling Community Software Development. Cluster Computing, 2002, 5, 297-304.	3.5	31
293	File and Object Replication in Data Grids. Cluster Computing, 2002, 5, 305-314.	3.5	113
294	Locating Data in (Small-World?) Peer-to-Peer Scientific Collaborations. Lecture Notes in Computer Science, 2002, , 232-241.	1.0	64
295	Mapping the Gnutella Network: Macroscopic Properties of Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science, 2002, , 85-93.	1.0	215
296	Die Anatomie des Grid. Xpert Press, 2002, , 119-152.	0.1	8
297	On Fully Decentralized Resource Discovery in Grid Environments. Lecture Notes in Computer Science, 2001, , 51-62.	1.0	174
298	Secure, Efficient Data Transport and Replica Management for High-Performance Data-Intensive Computing. Mass Storage Systems and Technologies (MSS), Proceedings of the NASA Goddard Conference on, $2001, \ldots$	0.0	144
299	Computational Grids. Lecture Notes in Computer Science, 2001, , 3-37.	1.0	13
300	The GrADS Project: Software Support for High-Level Grid Application Development. International Journal of High Performance Computing Applications, 2001, 15, 327-344.	2.4	239
301	Grid Computing. AIP Conference Proceedings, 2001, , .	0.3	3
302	A Java commodity grid kit. Concurrency Computation Practice and Experience, 2001, 13, 645-662.	1.4	221
303	Parallel computing in 2010. ACM SIGPLAN Notices, 2001, 36, 1.	0.2	11
304	Multiparadigm communications in Java for grid computing. Communications of the ACM, 2001, 44, 118-125.	3.3	51
305	Identifying Dynamic Replication Strategies for a High-Performance Data Grid. Lecture Notes in Computer Science, 2001, , 75-86.	1.0	266
306	Supporting efficient execution in heterogeneous distributed computing environments with cactus and globus. , 2001 , , .		91

#	Article	IF	Citations
307	The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Performance Computing Applications, 2001, 15, 200-222.	2.4	4,854
308	A high-throughput x-ray microtomography system at the Advanced Photon Source. Review of Scientific Instruments, 2001, 72, 2062-2068.	0.6	136
309	A Java commodity grid kit. Concurrency Computation Practice and Experience, 2001, 13, 645-662.	1.4	14
310	The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Lecture Notes in Computer Science, 2001, , 1-4.	1.0	141
311	Cactus Application: Performance Predictions in Grid Environments. Lecture Notes in Computer Science, 2001, , 807-816.	1.0	21
312	Computational Design and Performance of the Fast Ocean Atmosphere Model, Version One. Lecture Notes in Computer Science, 2001, , 175-184.	1.0	40
313	The Model Coupling Toolkit. Lecture Notes in Computer Science, 2001, , 185-194.	1.0	21
314	The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets. Journal of Network and Computer Applications, 2000, 23, 187-200.	5.8	802
315	A differentiated services implementation for high-performance TCP flows. Computer Networks, 2000, 34, 915-929.	3.2	16
316	A national-scale authentication infrastructure. Computer, 2000, 33, 60-66.	1.2	176
317	Title is missing!. Cluster Computing, 2000, 3, 187-199.	3.5	8
318	Languages for Parallel Processing. , 2000, , 92-165.		1
319	The Emerging Grid. , 2000, , 29-46.		3
320	GASS., 1999,,.		142
321	The Globus project: a status report. Future Generation Computer Systems, 1999, 15, 607-621.	4.9	78
322	A fault detection service for wide area distributed computations. Cluster Computing, 1999, 2, 117-128.	3.5	48
323	Implementing noncollective parallel I/O in cluster environments using Active Message communication. Cluster Computing, 1999, 2, 271-279.	3.5	0
324	Distance visualization: data exploration on the grid. Computer, 1999, 32, 36-43.	1.2	36

#	Article	IF	CITATIONS
325	Large-scale distributed computational fluid dynamics on the information power grid using Globus. , 1999, , .		25
326	Using Run-Time Predictions to Estimate Queue Wait Times and Improve Scheduler Performance. Lecture Notes in Computer Science, 1999, , 202-219.	1.0	133
327	Managing security in highâ€performance distributed computations. Cluster Computing, 1998, 1, 95-107.	3.5	31
328	Software infrastructure for the I-WAY metacomputing experiment. Concurrency and Computation: Practice and Experience, 1998, 10, 567-581.	0.6	12
329	Wide-area implementation of the Message Passing Interface. Parallel Computing, 1998, 24, 1735-1749.	1.3	69
330	A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems. , 1998, , .		110
331	A security architecture for computational grids. , 1998, , .		833
332	A resource management architecture for metacomputing systems. Lecture Notes in Computer Science, 1998, , 62-82.	1.0	488
333	Computational grids: On-demand computing in science and engineering. Computers in Physics, 1998, 12, 109.	0.6	1
334	High-Performance Computational Grids. , 1998, , 17-18.		0
334	High-Performance Computational Grids. , 1998, , 17-18. Remote I/O. , 1997, , .		O 58
		1.6	
335	Remote I/O., 1997,,. Globus: a Metacomputing Infrastructure Toolkit. International Journal of High Performance	1.6	58
335	Remote I/O., 1997,,. Globus: a Metacomputing Infrastructure Toolkit. International Journal of High Performance Computing Applications, 1997, 11, 115-128.		2,226
335 336 337	Remote I/O., 1997,,. Globus: a Metacomputing Infrastructure Toolkit. International Journal of High Performance Computing Applications, 1997, 11, 115-128. NeXeme: A distributed scheme based on Nexus. Lecture Notes in Computer Science, 1997,, 581-590. Technologies for ubiquitous supercomputing: a Java interface to the Nexus communication system.	1.0	58 2,226 10
335 336 337	Remote I/O., 1997, Globus: a Metacomputing Infrastructure Toolkit. International Journal of High Performance Computing Applications, 1997, 11, 115-128. NeXeme: A distributed scheme based on Nexus. Lecture Notes in Computer Science, 1997, , 581-590. Technologies for ubiquitous supercomputing: a Java interface to the Nexus communication system. Concurrency and Computation: Practice and Experience, 1997, 9, 465-475. Managing Multiple Communication Methods in High-Performance Networked Computing Systems.	0.6	58 2,226 10 9
335 336 337 338	Remote I/O., 1997, , . Globus: a Metacomputing Infrastructure Toolkit. International Journal of High Performance Computing Applications, 1997, 11, 115-128. NeXeme: A distributed scheme based on Nexus. Lecture Notes in Computer Science, 1997, , 581-590. Technologies for ubiquitous supercomputing: a Java interface to the Nexus communication system. Concurrency and Computation: Practice and Experience, 1997, 9, 465-475. Managing Multiple Communication Methods in High-Performance Networked Computing Systems. Journal of Parallel and Distributed Computing, 1997, 40, 35-48. Technologies for ubiquitous supercomputing: a Java interface to the Nexus communication system. ,	0.6	58 2,226 10 9

#	Article	IF	CITATIONS
343	Tools for distributed collaborative environments: a research agenda. , 1996, , .		6
344	The Nexus Approach to Integrating Multithreading and Communication. Journal of Parallel and Distributed Computing, 1996, 37, 70-82.	2.7	200
345	Overview of the I-Way: Wide-Area Visual Supercomputing. International Journal of High Performance Computing Applications, 1996, 10, 123-131.	1.6	88
346	Double standards. , 1996, , .		29
347	High-performance distributed computing: The I-WAY experiment and beyond. Lecture Notes in Computer Science, 1996, , 1-10.	1.0	3
348	Compositional parallel programming languages. ACM Transactions on Programming Languages and Systems, 1996, 18, 454-476.	1.7	23
349	Point-To-Point Communication Using Migrating Ports. , 1996, , 199-212.		1
350	Parallel computing in climate and weather modeling. Parallel Computing, 1995, 21, 1537.	1.3	4
351	Design and performance of a scalable parallel community climate model. Parallel Computing, 1995, 21, 1571-1591.	1.3	83
352	A notation for deterministic cooperating processes. IEEE Transactions on Parallel and Distributed Systems, 1995, 6, 863-871.	4.0	6
353	Language constructs and runtime systems for compositional parallel programming. Lecture Notes in Computer Science, 1994, , 5-16.	1.0	3
354	Productive Parallel Programming: The PCN Approach. Scientific Programming, 1992, 1, 51-66.	0.5	50
355	Efficient computation control in concurrent logic languages. New Generation Computing, 1991, 10, 1-21.	2.5	0
356	A declarative state transition system. The Journal of Logic Programming, 1991, 10, 45-67.	1.9	1
357	Aligning Multiple RNA Sequences. Automated Reasoning Series, 1991, , 231-247.	0.5	0
358	Concurrency: Simple Concepts and Powerful Tools. Computer Journal, 1990, 33, 501-507.	1.5	7
359	A high-performance parallel theorem prover. Lecture Notes in Computer Science, 1990, , 649-650.	1.0	1
360	Implementation of a declarative state-transition system. Software - Practice and Experience, 1989, 19, 351-370.	2.5	3

#	Article	IF	CITATIONS
361	An abstract machine for the implementation of PARLOG on uniprocessors. New Generation Computing, 1989, 6, 389-420.	2.5	14
362	A multicomputer garbage collector for a single-assignment language. International Journal of Parallel Programming, 1989, 18, 181-203.	1.1	14
363	A declarative environment for concurrent logic programming. , 1987, , 212-242.		5
364	Flat Parlog: A basis for comparison. International Journal of Parallel Programming, 1987, 16, 87-125.	1.1	15
365	A sequential implementation of Parlog. Lecture Notes in Computer Science, 1986, , 149-156.	1.0	5
366	A compilation system that integrates High Performance Fortran and Fortran M., 0,,.		43
367	Generalized communicators in the Message Passing Interface. , 0, , .		209
368	A secure communications infrastructure for high-performance distributed computing. , 0, , .		17
369	A directory service for configuring high-performance distributed computations. , 0, , .		194
370	Application experiences with the Globus toolkit., 0, , .		37
371	The Globus project: a status report. , 0, , .		279
372	A fault detection service for wide area distributed computations. , 0, , .		97
373	A distributed resource management architecture that supports advance reservations and co-allocation. , 0, , .		385
374	Internet Computing and the Emerging Grid. Nature, 0, , .	13.7	64
375	A quality of service architecture that combines resource reservation and application adaptation. , 0, , .		200
376	Scheduling with advanced reservations., 0,,.		166
377	Condor-G: a computation management agent for multi-institutional grids. , 0, , .		323
378	Replica selection in the Globus Data Grid., 0,,.		125

#	Article	IF	CITATIONS
379	The Astrophysics Simulation Collaboratory: a science portal enabling community software development. , 0, , .		17
380	The globus toolkit for grid computing. , 0, , .		16
381	Grid information services for distributed resource sharing. , 0, , .		874
382	The anatomy of the grid: enabling scalable virtual organizations. , 0, , .		617
383	File and object replication in data grids. , O, , .		73
384	End-to-end provision of policy information for network QoS. , 0, , .		27
385	A community authorization service for group collaboration. , 0, , .		360
386	Design and evaluation of a resource selection framework for Grid applications. , 0, , .		73
387	A decentralized, adaptive replica location mechanism. , 0, , .		37
388	Improving Data Availability through Dynamic Model-Driven Replication in Large Peer-to-Peer Communities. , 0 , , .		116
389	Decoupling computation and data scheduling in distributed data-intensive applications. , 0, , .		237
390	Chimera: a virtual data system for representing, querying, and automating data derivation. , 0 , , .		340
391	GridMapper: a tool for visualizing the behavior of large-scale distributed systems. , 0, , .		13
392	Security for Grid services., 0,,.		277
393	The virtual data grid: a new model and architecture for data-intensive collaboration. , 0, , .		66
394	Homeostatic and tendency-based CPU load predictions. , 0, , .		68
395	Building an open grid., 0, , .		2
396	The Grid: A New Infrastructure for 21st Century Science. , 0, , 51-63.		23

#	Article	IF	CITATIONS
397	The Physiology of the Grid., 0,, 217-249.		205
398	The Anatomy of the Grid., 0,, 169-197.		179
399	Software Infrastructure for the I-WAY High-Performance Distributed Computing Experiment. , 0, , 101-115.		1
400	Small-world file-sharing communities. , 0, , .		127
401	Ouroboros: a tool for building generic, hybrid, divide & conquer algorithms. , 0, , .		O
402	Usage Policy-Based CPU Sharing in Virtual Organizations., 0,,.		19
403	A constraint language approach to matchmaking. , 0, , .		17
404	DiPerF: An Automated Distributed PERformance Testing Framework. , 0, , .		20
405	Incentive mechanisms for large collaborative resource sharing. , 0, , .		31
406	The grid2003 production grid: principles and practice. , 0, , .		33
407	Service-Oriented Science: Scaling the Application and Impact of eResearch., 0,,.		2
408	State and events for web services: a comparison of five WS-resource framework and WS-notification implementations. , 0 , , .		45
409	DI-GRUBER: A Distributed Approach to Grid Resource Brokering., 0, , .		21
410	A Model for Usage Policy-Based Resource Allocation in Grids. , 0, , .		21
411	Interest-aware information dissemination in small-world communities., 0,,.		32
412	A Multipolicy Authorization Framework for Grid Security. , 0, , .		40
413	A codesign framework for online data analysis and reduction. Concurrency Computation Practice and Experience, 0, , e6519.	1.4	1
414	Towards Data Intensive Many-Task Computing. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 0, , 28-73.	0.5	12

#	Article	IF	CITATIONS
415	Personalized Biomedical Data Integration. , 0, , .		1
416	Impact on US Gasoline Prices of Eliminating Biofuels Production: An Equilibrium Analysis. SSRN Electronic Journal, 0, , .	0.4	0
417	Efficient Incremental Maintenance of Derived Relations and BLAST Computations in Bioinformatics Data Warehouses. Lecture Notes in Computer Science, 0, , 135-145.	1.0	2