Bartlomiej Zapotoczny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8200359/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking Fenestrae Dynamics in Live Murine Liver Sinusoidal Endothelial Cells. Hepatology, 2019, 69, 876-888.	3.6	47
2	LSEC Fenestrae Are Preserved Despite Pro-inflammatory Phenotype of Liver Sinusoidal Endothelial Cells in Mice on High Fat Diet. Frontiers in Physiology, 2019, 10, 6.	1.3	36
3	Atomic Force Microscopy Reveals the Dynamic Morphology of Fenestrations in Live Liver Sinusoidal Endothelial Cells. Scientific Reports, 2017, 7, 7994.	1.6	35
4	The wHole Story About Fenestrations in LSEC. Frontiers in Physiology, 2021, 12, 735573.	1.3	29
5	Actinâ€ s pectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells. Traffic, 2019, 20, 932-942.	1.3	24
6	Quantification of fenestrations in liver sinusoidal endothelial cells by atomic force microscopy. Micron, 2017, 101, 48-53.	1.1	21
7	Morphology and force probing of primary murine liver sinusoidal endothelial cells. Journal of Molecular Recognition, 2017, 30, e2610.	1.1	17
8	Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biology, 2020, 34, 101572.	3.9	16
9	Biophysical nanocharacterization of liver sinusoidal endothelial cells through atomic force microscopy. Biophysical Reviews, 2020, 12, 625-636.	1.5	12
10	Aryl Halide C–C Coupling on Ge(001):H Surfaces. Journal of Physical Chemistry C, 2015, 119, 27478-27482.	1.5	11
11	Preparation of the narrow size distribution USPIO in mesoporous silica for magnetic field guided drug delivery and release. Journal of Magnetism and Magnetic Materials, 2015, 374, 96-102.	1.0	11
12	Limitation of tuning the antibody-antigen reaction by changing the value of pH and its consequence for hyperthermia. Journal of Biochemistry, 2016, 159, 421-427.	0.9	10
13	Nanobuffering property of Fe3O4 magnetic nanoparticles in aqueous solution. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1493-1499.	1.2	8
14	Space Dependent Mean Field Approximation Modelling. Journal of Statistical Physics, 2014, 154, 1508-1515.	0.5	8
15	Quantitative analysis methods for studying fenestrations in liver sinusoidal endothelial cells. A comparative study. Micron, 2021, 150, 103121.	1.1	8
16	AFM image analysis of porous structures by means of neural networks. Biomedical Signal Processing and Control, 2022, 71, 103097.	3.5	8
17	FMR Study of the Porous Silicate Glasses with Fe ₃ O ₄ Magnetic Nanoparticles Fillers. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	7
18	Fat causes necrosis and inflammation in parenchymal cells in human steatotic liver. Histochemistry and Cell Biology, 2022, 157, 27-38.	0.8	7

#	Article	IF	CITATIONS
19	Application of a layered model for determination of the elasticity of biological systems. Micron, 2019, 124, 102705.	1.1	6
20	Adsorption of Methylene Blue on Titanate Nanotubes Synthesized with Ultra-Small Fe3O4 Nanoparticles. Nano, 2018, 13, 1850142.	0.5	3
21	The Effect of Fe3O4 Nanoparticles on Survival of Probiotic Bacteria Lactobacillus acidophilus PCM2499 at Lower pH. Polish Journal of Microbiology, 2015, 64, 307-310.	0.6	3
22	From fixed-dried to wet-fixed to live– comparative super-resolution microscopy of liver sinusoidal endothelial cell fenestrations. Nanophotonics, 2022, .	2.9	3
23	The Effect of Fe3O4 Nanoparticles on Survival of Probiotic Bacteria Lactobacillus acidophilus PCM2499 at Lower pH. Polish Journal of Microbiology, 2015, 64, 307-10.	0.6	0
24	Foreword to the special issue on different approaches to force spectroscopy in the research of cell pathologies. Micron, 2022, 161, 103325.	1.1	0