
Georgios Mylonas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8200045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using gamification and IoT-based educational tools towards energy savings - some experiences from two schools in Italy and Greece. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 15725-15744.	3.3	13
2	Designing Effective Playful Experiences for Sustainability Awareness in Schools and Makerspaces. , 2021, , .		3
3	Digital Twins From Smart Manufacturing to Smart Cities: A Survey. IEEE Access, 2021, 9, 143222-143249.	2.6	95
4	Understanding the Effect of the COVID-19 Pandemic on the Usage of School Buildings in Greece Using an IoT Data-Driven Analysis. , 2021, , .		1
5	LearningCity: Knowledge Generation for Smart Cities. EAI/Springer Innovations in Communication and Computing, 2020, , 17-41.	0.9	2
6	Efficient Compilation and Execution of JVM-Based Data Processing Frameworks on Heterogeneous Co-Processors. , 2020, , .		0
7	A Comparative Study of LoRa and IEEE 802.15.4-Based IoT Deployments Inside School Buildings. IEEE Access, 2020, 8, 160957-160981.	2.6	17
8	A RESTful Rule Management Framework for Internet of Things Applications. IEEE Access, 2020, 8, 217987-218001.	2.6	7
9	An Augmented Reality Prototype for supporting IoT-based Educational Activities for Energy-efficient School Buildings. Electronic Notes in Theoretical Computer Science, 2019, 343, 89-101.	0.9	33
10	An educational IoT lab kit and tools for energy awareness in European schools. International Journal of Child-Computer Interaction, 2019, 20, 43-53.	2.5	24
11	A Methodology for Saving Energy in Educational Buildings Using an IoT Infrastructure. , 2019, , .		6
12	Advancing Experimentation-as-a-Service Through Urban IoT Experiments. IEEE Internet of Things Journal, 2019, 6, 2563-2572.	5.5	13
13	Experiences from Using LoRa and IEEE 802.15.4 for IoT-Enabled Classrooms. Lecture Notes in Computer Science, 2019, , 186-202.	1.0	1
14	Experiences from Using Gamification and IoT-Based Educational Tools in High Schools Towards Energy Savings. Lecture Notes in Computer Science, 2019, , 75-91.	1.0	5
15	Using IoT-based big data generated inside school buildings. , 2019, , 29-55.		0
16	Empowering Citizens Toward the Co-Creation of Sustainable Cities. IEEE Internet of Things Journal, 2018, 5, 668-676.	5.5	47
17	Enabling Sustainability and Energy Awareness in Schools Based on IoT and Real-World Data. IEEE Pervasive Computing, 2018, 17, 53-63.	1.1	38
18	Managing Pervasive Sensing Campaigns via an Experimentation-as-a-Service Platform for Smart Cities. Sensors, 2018, 18, 2125.	2.1	15

GEORGIOS MYLONAS

#	Article	IF	CITATIONS
19	Scenarios for Educational and Game Activities using Internet of Things Data. , 2018, , .		4
20	Using an Educational IoT Lab Kit and Gamification for Energy Awareness in European Schools. , 2018, , .		16
21	Open source IoT meter devices for smart and energy-efficient school buildings. HardwareX, 2017, 1, 54-67.	1.1	89
22	Addressing behavioral change towards energy efficiency in European educational buildings. , 2017, , .		4
23	A resource-based rule engine for energy savings recommendations in educational buildings. , 2017, , .		4
24	An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency. Sensors, 2017, 17, 2296.	2.1	51
25	Co-Creating the Cities of the Future. Sensors, 2016, 16, 1971.	2.1	35
26	Knowledge co-creation in the OrganiCity: Data annotation with JAMAiCA. , 2016, , .		4
27	Managing smartphone crowdsensing campaigns through the organicity smart city platform. , 2016, , .		1
28	Green mindset. , 2015, , .		1
29	Integrating Smartphones into the SmartSantander Infrastructure. IEEE Internet Computing, 2015, 19, 48-56.	3.2	6
30	Developments and challenges ahead in smart city frameworks - lessons from SmartSantander. International Journal of Intelligent Engineering Informatics, 2015, 3, 95.	0.1	4
31	Large-Scale Participatory Sensing Experimentation Using Smartphones within a Smart City. , 2014, , .		2
32	Realizing Large-Scale Street Games Using Heterogeneous Future Internet Technologies. , 2013, , .		0
33	Developing an IoT Smart City framework. , 2013, , .		84
34	Using Future Internet Infrastructure and Smartphones for Mobility Trace Acquisition and Social Interactions Monitoring. Lecture Notes in Computer Science, 2012, , 117-129.	1.0	4
35	Implementing multiplayer pervasive installations based on mobile sensing devices: Field experience and user evaluation from a public showcase. Journal of Systems and Software, 2011, 84, 1989-2004.	3.3	23
36	Distributed algorithm engineering for networks of tiny artifacts. Computer Science Review, 2011, 5, 85-102.	10.2	11

3

#	Article	IF	CITATIONS
37	Urban pervasive applications: Challenges, scenarios and case studies. Computer Science Review, 2011, 5, 103-118.	10.2	26
38	Monitoring physical space using mobile phones for inferring social and contextual interactions. , 2011, , .		2
39	WISEBED: An Open Large-Scale Wireless Sensor Network Testbed. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 68-87.	0.2	52
40	Fun with Games. Lecture Notes in Computer Science, 2010, , 4-15.	1.0	0
41	The Design of an Environment for Monitoring and Controlling Remote Sensor Networks. International Journal of Distributed Sensor Networks, 2009, 5, 262-282.	1.3	6
42	Multiplayer pervasive games and networked interactive installations using ad hoc mobile sensor networks. , 2009, , .		0
43	Developing multiplayer pervasive games and networked interactive installations using ad hoc mobile sensor nets. , 2009, , .		17
44	A software platform for developing multi-player pervasive games using small programmable object technologies. , 2008, , .		2
45	TRAILS, a Toolkit for Efficient, Realistic and Evolving Models of Mobility, Faults and Obstacles in Wireless Networks. Simulation Symposium, Proceedings of the Annual, 2008, , .	0.0	15
46	Using wireless sensor networks to develop pervasive multi-player games. , 2008, , .		0
47	A peer-to-peer environment for monitoring multiple wireless sensor networks. , 2007, , .		10
48	50 ways to build your application: A survey of middleware and systems for Wireless Sensor Networks. , 2007, , .		30
49	A Model for Obstacles to be used in Simulations of Wireless Sensor Networks and its Application in studying Routing Protocol Performance. Simulation, 2007, 83, 587-608.	1.1	8
50	jWebDust : A Java-Based Generic Application Environment for Wireless Sensor Networks. Lecture Notes in Computer Science, 2005, , 376-386.	1.0	24