List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of glutathione synthesis. Molecular Aspects of Medicine, 2009, 30, 42-59.	2.7	1,567
2	Glutathione synthesis. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3143-3153.	1.1	1,418
3	Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB Journal, 1999, 13, 1169-1183.	0.2	744
4	Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes. Journal of Proteome Research, 2008, 7, 5157-5166.	1.8	530
5	<i>S</i> -adenosylmethionine in Liver Health, Injury, and Cancer. Physiological Reviews, 2012, 92, 1515-1542.	13.1	422
6	S-Adenosylmethionine. International Journal of Biochemistry and Cell Biology, 2000, 32, 391-395.	1.2	403
7	NASH Leading Cause of Liver Transplant in Women: Updated Analysis of Indications For Liver Transplant and Ethnic and Gender Variances. American Journal of Gastroenterology, 2018, 113, 1649-1659.	0.2	401
8	Sâ€Adenosylmethionine: a control switch that regulates liver function. FASEB Journal, 2002, 16, 15-26.	0.2	383
9	Current concepts in the pathogenesis of alcoholic liver injury. FASEB Journal, 2001, 15, 1335-1349.	0.2	343
10	Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. Journal of Hepatology, 2000, 33, 907-914.	1.8	315
11	Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology, 2008, 47, 1191-1199.	3.6	262
12	Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB Journal, 2002, 16, 1292-1294.	0.2	259
13	Role of S-adenosyl-L-methionine in liver health and injury. Hepatology, 2007, 45, 1306-1312.	3.6	258
14	Methionine Metabolism and Liver Disease. Annual Review of Nutrition, 2008, 28, 273-293.	4.3	253
15	Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: The multiethnic cohort. Hepatology, 2016, 64, 1969-1977.	3.6	237
16	Nrf1 and Nrf2 Regulate Rat Glutamate-Cysteine Ligase Catalytic Subunit Transcription Indirectly via NF-κB and AP-1. Molecular and Cellular Biology, 2005, 25, 5933-5946.	1.1	218
17	Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis. Gastroenterology, 2017, 152, 1449-1461.e7.	0.6	209
18	S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6489-6494.	3.3	205

#	Article	IF	CITATIONS
19	Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology, 2021, 73, 422-436.	3.6	200
20	Regulation of glutathione synthesis. Current Topics in Cellular Regulation, 2001, 36, 95-116.	9.6	192
21	Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB Journal, 2001, 15, 19-21.	0.2	192
22	Methylthioadenosine. International Journal of Biochemistry and Cell Biology, 2004, 36, 2125-2130.	1.2	192
23	Emerging Role of Epigenetics in the Actions of Alcohol. Alcoholism: Clinical and Experimental Research, 2008, 32, 1525-1534.	1.4	188
24	<i>S</i> â€Adenosylmethionine in cell growth, apoptosis and liver cancer. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S73-7.	1.4	169
25	Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. American Journal of Clinical Nutrition, 2007, 86, 14-24.	2.2	168
26	Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. American Journal of Physiology - Renal Physiology, 2000, 279, G178-G185.	1.6	162
27	SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of Serum. IScience, 2020, 23, 101645.	1.9	157
28	Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of S-adenosylmethionine. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3065-3070.	3.3	154
29	S-adenosylmethionine metabolism and liver disease. Annals of Hepatology, 2013, 12, 183-189.	0.6	152
30	Association of Coffee Intake With Reduced Incidence of Liver Cancer and Death From Chronic Liver Disease in the US Multiethnic Cohort. Gastroenterology, 2015, 148, 118-125.	0.6	145
31	Liquid Chromatographyâ~'Mass Spectrometry-Based Parallel Metabolic Profiling of Human and Mouse Model Serum Reveals Putative Biomarkers Associated with the Progression of Nonalcoholic Fatty Liver Disease. Journal of Proteome Research, 2010, 9, 4501-4512.	1.8	144
32	Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology, 2010, 52, 945-953.	3.6	139
33	Abnormal Hepatic Methionine and Glutathione Metabolism in Patients With Alcoholic Hepatitis. Alcoholism: Clinical and Experimental Research, 2004, 28, 173-181.	1.4	138
34	Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol, 2005, 35, 227-234.	0.8	138
35	MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. Journal of Clinical Investigation, 2013, 123, 285-298.	3.9	126
36	Differential regulation of γ-glutamylcysteine synthetase heavy and light subunit gene expression. Biochemical Journal, 1997, 326, 167-172.	1.7	121

#	Article	IF	CITATIONS
37	S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology, 2002, 35, 274-280.	3.6	118
38	Metabolomicâ€based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatology Communications, 2018, 2, 807-820.	2.0	117
39	Candidate biomarkers in exosomeâ€like vesicles purified from rat and mouse urine samples. Proteomics - Clinical Applications, 2010, 4, 416-425.	0.8	116
40	Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2019, 25, 3009-3020.	1.4	115
41	HuR/Methyl-HuR and AUF1 Regulate the MAT Expressed During Liver Proliferation, Differentiation, and Carcinogenesis. Gastroenterology, 2010, 138, 1943-1953.e3.	0.6	113
42	Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology, 2010, 52, 2096-2108.	3.6	107
43	Non-alcoholic steatohepatitis and animal models: Understanding the human disease. International Journal of Biochemistry and Cell Biology, 2009, 41, 969-976.	1.2	104
44	Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology, 2012, 55, 1237-1248.	3.6	104
45	Regulation of <i>γ</i> -glutamylcysteine synthetase by protein phosphorylation. Biochemical Journal, 1996, 320, 321-328.	1.7	103
46	Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology, 2013, 58, 1296-1305.	3.6	100
47	Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Experimental Biology and Medicine, 2015, 240, 809-820.	1.1	98
48	S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology, 2008, 47, 1655-1666.	3.6	94
49	5′-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology, 2004, 39, 1088-1098.	3.6	91
50	Hyaluronan synthase $2\hat{a}\in$ "mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .	5.8	91
51	Liverâ€specific methionine adenosyltransferase <i>MAT1A</i> gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for <i>MAT1A</i> silencing during transformation. FASEB Journal, 2000, 14, 95-102.	0.2	89
52	S–Adenosylmethionine Regulates Cytoplasmic HuR Via AMP–Activated Kinase. Gastroenterology, 2006, 131, 223-232.	0.6	87
53	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-β-induced apoptosis. Hepatology, 2009, 49, 1277-1286.	3.6	87
54	Role of abnormal methionine metabolism in alcoholic liver injury. Alcohol, 2002, 27, 155-162.	0.8	86

#	Article	IF	CITATIONS
55	Role of Methionine Adenosyltransferase 2A and S-adenosylmethionine in Mitogen-Induced Growth of Human Colon Cancer Cells. Gastroenterology, 2007, 133, 207-218.	0.6	86
56	Regulation of Hepatic Glutathione Synthesis. Seminars in Liver Disease, 1998, 18, 331-343.	1.8	84
57	Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. Hepatology, 2008, 47, 1288-1297.	3.6	84
58	Role of aramchol in steatohepatitis and fibrosis in mice. Hepatology Communications, 2017, 1, 911-927.	2.0	84
59	Changes in glutathione homeostasis during liver regeneration in the rat. Hepatology, 1998, 27, 147-153.	3.6	83
60	Alcohol, DNA methylation, and cancer. , 2013, 35, 25-35.		83
61	Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. Hepatology, 2010, 52, 105-114.	3.6	81
62	Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density lipoprotein assembly in mice. Hepatology, 2011, 54, 1975-1986.	3.6	81
63	Dysregulation of glutathione synthesis during cholestasis in mice: Molecular mechanisms and therapeutic implications. Hepatology, 2009, 49, 1982-1991.	3.6	79
64	Human antigen R contributes to hepatic stellate cell activation and liver fibrosis. Hepatology, 2012, 56, 1870-1882.	3.6	79
65	S-adenosylmethionine in the chemoprevention and treatment of hepatocellular carcinoma in a rat model. Hepatology, 2009, 50, 462-471.	3.6	78
66	S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: Role of protein phosphatase 1 and Bcl-xS. Hepatology, 2004, 40, 221-231.	3.6	77
67	The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nature Communications, 2017, 8, 2068.	5.8	77
68	Genetic polymorphisms in themethylenetetrahydrofolate reductase andthymidylate synthase genes and risk of hepatocellular carcinoma. Hepatology, 2007, 46, 749-758.	3.6	75
69	Tumour necrosis factor α induces co-ordinated activation of rat GSH synthetic enzymes via nuclear factor κB and activator protein-1. Biochemical Journal, 2005, 391, 399-408.	1.7	73
70	MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology, 2013, 57, 2299-2313.	3.6	73
71	L-Methionine Availability Regulates Expression of the Methionine Adenosyltransferase 2A Gene in Human Hepatocarcinoma Cells. Journal of Biological Chemistry, 2003, 278, 19885-19890.	1.6	72
72	Leptin's mitogenic effect in human liver cancer cells requires induction of both methionine adenosyltransferase 2A and 2β. Hepatology, 2008, 47, 521-531.	3.6	72

#	Article	IF	CITATIONS
73	Effects of S -adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis, 2012, 33, 427-435.	1.3	70
74	<i>S</i> -adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology, 2012, 56, 982-993.	3.6	70
75	Current status of hepatocellular carcinoma detection: screening strategies and novel biomarkers. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986912.	1.4	70
76	Evidence for LKB1/AMP-activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatology, 2009, 49, 608-617.	3.6	69
77	Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 2015, 6, 2509-2523.	0.8	69
78	Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A. FASEB Journal, 2004, 18, 914-916.	0.2	68
79	Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer. Gastroenterology, 2018, 155, 557-571.e14.	0.6	68
80	Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metabolism, 2020, 31, 605-622.e10.	7.2	68
81	Inhibition of lipopolysaccharide-stimulated TNF-α promoter activity byS-adenosylmethionine and 5′-methylthioadenosine. American Journal of Physiology - Renal Physiology, 2004, 287, G352-G362.	1.6	67
82	S-adenosylmethionine Levels Regulate the Schwann Cell DNA Methylome. Neuron, 2014, 81, 1024-1039.	3.8	67
83	S-adenosylmethionine metabolism and liver disease. Annals of Hepatology, 2013, 12, 183-9.	0.6	67
84	Effect of ethanol and high-fat feeding on hepatic ?-glutamylcysteine synthetase subunit expression in the rat. Hepatology, 1999, 30, 209-214.	3.6	66
85	Retinoid X Receptor $\hat{I}\pm$ Regulates Glutathione Homeostasis and Xenobiotic Detoxification Processes in Mouse Liver. Molecular Pharmacology, 2004, 65, 550-557.	1.0	66
86	Cloning and characterization of the human glutathione synthetase 5′-flanking region. Biochemical Journal, 2005, 390, 521-528.	1.7	66
87	Inhibition of human betaine–homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. Biochemical Journal, 2007, 401, 87-96.	1.7	66
88	Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics, 2012, 8, 997-1011.	1.4	66
89	The role of câ€Myb and Sp1 in the upâ€regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma. FASEB Journal, 2001, 15, 1507-1516.	0.2	65
90	Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. Journal of Proteomics, 2014, 103, 227-240.	1.2	64

#	Article	IF	CITATIONS
91	Incidence of Pancreatic Cancer by Age and Sex in the US, 2000-2018. JAMA - Journal of the American Medical Association, 2021, 326, 2075.	3.8	63
92	Changes in methionine adenosyltransferase during liver regeneration in the rat. American Journal of Physiology - Renal Physiology, 1998, 275, G14-G21.	1.6	62
93	Expression Pattern, Regulation, and Functions of Methionine Adenosyltransferase 2β Splicing Variants in Hepatoma Cells. Gastroenterology, 2008, 134, 281-291.	0.6	62
94	Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis. Hepatology, 2010, 52, 1621-1631.	3.6	60
95	Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. Journal of Hepatology, 2016, 64, 409-418.	1.8	59
96	Inducers of Î ³ -glutamylcysteine synthetase and their effects on glutathione synthetase expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1493, 48-55.	2.4	58
97	Inhibition of natural killer cells protects the liver against acute injury in the absence of glycine N-methyltransferase. Hepatology, 2012, 56, 747-759.	3.6	58
98	Effect of Thioacetamide on the Hepatic Expression of Î ³ -Glutamylcysteine Synthetase Subunits in the Rat. Toxicology and Applied Pharmacology, 1999, 159, 161-168.	1.3	57
99	Hepatocyte growth factor induces MAT2A expression and histone acetylation in rat hepatocytes: role in liver regeneration 1. FASEB Journal, 2001, 15, 1248-1250.	0.2	56
100	Activation of a Novel c-Myc-miR27-Prohibitin 1 Circuitry in Cholestatic Liver Injury Inhibits Glutathione Synthesis in Mice. Antioxidants and Redox Signaling, 2015, 22, 259-274.	2.5	55
101	Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals. World Journal of Gastroenterology, 2018, 24, 1269-1277.	1.4	55
102	Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. Experimental Biology and Medicine, 2018, 243, 107-117.	1.1	54
103	Differential effect of thioacetamide on hepatic methionine adenosyltransferase expression in the rat. Hepatology, 1999, 29, 1471-1478.	3.6	53
104	NODâ€ŀike receptor C4 Inflammasome Regulates the Growth of Colon Cancer Liver Metastasis in NAFLD. Hepatology, 2019, 70, 1582-1599.	3.6	53
105	Identification of a gene-pathway associated with non-alcoholic steatohepatitis. Journal of Hepatology, 2007, 46, 708-718.	1.8	52
106	Role of promoter methylation in increased methionine adenosyltransferase 2A expression in human liver cancer. American Journal of Physiology - Renal Physiology, 2001, 280, G184-G190.	1.6	51
107	Induction of Human Methionine Adenosyltransferase 2A Expression by Tumor Necrosis Factor α. Journal of Biological Chemistry, 2003, 278, 50887-50896.	1.6	51
108	Alcohol, cofactors and the genetics of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S92-7.	1.4	51

#	Article	IF	CITATIONS
109	<i>S</i> -Adenosylmethionine and Methylthioadenosine Inhibit Cellular FLICE Inhibitory Protein Expression and Induce Apoptosis in Colon Cancer Cells. Molecular Pharmacology, 2009, 76, 192-200.	1.0	51
110	Changes in the expression of methionine adenosyltransferase genes and S-adenosylmethionine homeostasis during hepatic stellate cell activation. Hepatology, 2009, 51, NA-NA.	3.6	50
111	Deregulated neddylation in liver fibrosis. Hepatology, 2017, 65, 694-709.	3.6	50
112	15-Deoxy-Δ12,14-Prostaglandin J2 Protects against Nitrosative PC12 Cell Death through Up-regulation of Intracellular Glutathione Synthesis. Journal of Biological Chemistry, 2004, 279, 46263-46270.	1.6	49
113	Changes in S-adenosylmethionine and GSH homeostasis during endotoxemia in mice. Laboratory Investigation, 2008, 88, 1121-1129.	1.7	49
114	Mechanism and Significance of Changes in Glutamate-Cysteine Ligase Expression during Hepatic Fibrogenesis. Journal of Biological Chemistry, 2012, 287, 36341-36355.	1.6	49
115	<i>S</i> -adenosylmethionine and proliferation: new pathways, new targets. Biochemical Society Transactions, 2008, 36, 848-852.	1.6	47
116	Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes. Biochemical Pharmacology, 1994, 47, 859-869.	2.0	46
117	Cloning and characterization of the 5′-flanking region of the rat glutamate-cysteine ligase catalytic subunit. Biochemical Journal, 2001, 357, 447-455.	1.7	45
118	Switch from Mnt-Max to Myc-Max induces p53 and cyclin D1 expression and apoptosis during cholestasis in mouse and human hepatocytes. Hepatology, 2009, 49, 860-870.	3.6	44
119	Nonâ€alcoholic fatty liver disease proteomics. Proteomics - Clinical Applications, 2010, 4, 362-371.	0.8	44
120	Diabetes and Racial/Ethnic Differences in Hepatocellular Carcinoma Risk: The Multiethnic Cohort. Journal of the National Cancer Institute, 2014, 106, dju326-dju326.	3.0	44
121	S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. Journal of Hepatology, 2015, 62, 673-681.	1.8	44
122	Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology, 2017, 65, 1249-1266.	3.6	44
123	Disparity in liver cancer incidence and chronic liver disease mortality by nativity in <scp>H</scp> ispanics: The <scp>M</scp> ultiethnic <scp>C</scp> ohort. Cancer, 2016, 122, 1444-1452.	2.0	43
124	Sex and Ethnic Differences in the Association of Obesity With Risk of Hepatocellular Carcinoma. Clinical Gastroenterology and Hepatology, 2016, 14, 309-316.	2.4	43
125	The Mortality and Overall Survival Trends of Primary Liver Cancer in the United States. Journal of the National Cancer Institute, 2021, 113, 1531-1541.	3.0	43
126	Forced Expression of Methionine Adenosyltransferase 1A in Human Hepatoma Cells Suppresses in Vivo Tumorigenicity in Mice. American Journal of Pathology, 2010, 176, 2456-2466.	1.9	41

#	Article	IF	CITATIONS
127	Methionine adenosyltransferases in liver cancer. World Journal of Gastroenterology, 2019, 25, 4300-4319.	1.4	41
128	Epigallocatechin-3-gallate Inhibits Growth of Activated Hepatic Stellate Cells by Enhancing the Capacity of Glutathione Synthesis. Molecular Pharmacology, 2008, 73, 1465-1473.	1.0	40
129	Hepatoma Cells From Mice Deficient in Glycine N-Methyltransferase Have Increased RAS Signaling and Activation of Liver Kinase B1. Gastroenterology, 2012, 143, 787-798.e13.	0.6	40
130	MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radical Biology and Medicine, 2016, 100, 66-72.	1.3	40
131	Betaine prevents Mallory-Denk body formation in drug-primed mice by epigenetic mechanisms. Experimental and Molecular Pathology, 2009, 86, 77-86.	0.9	39
132	Deregulated methionine adenosyltransferase α1, câ€Myc, and Maf proteins together promote cholangiocarcinoma growth in mice and humans‡. Hepatology, 2016, 64, 439-455.	3.6	39
133	Methionine adenosyltransferases in liver health and diseases. Liver Research, 2017, 1, 103-111.	0.5	39
134	Cloning and characterization of the 5′-flanking region of the rat glutamate-cysteine ligase catalytic subunit. Biochemical Journal, 2001, 357, 447.	1.7	38
135	Keratin mutation primes mouse liver to oxidative injury. Hepatology, 2005, 41, 517-525.	3.6	38
136	MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death and Disease, 2018, 9, 958.	2.7	38
137	Homocysteine, the bad thiol. Hepatology, 2005, 41, 976-979.	3.6	37
138	Methionine Adenosyltransferase 2B–GIT1 Complex Serves as a Scaffold to Regulate Ras/Raf/MEK1/2 Activity in Human Liver and Colon Cancer Cells. American Journal of Pathology, 2015, 185, 1135-1144.	1.9	37
139	Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Reports, 2021, 36, 109393.	2.9	37
140	Structure and function study of the complex that synthesizes <i>S</i> -adenosylmethionine. IUCrJ, 2014, 1, 240-249.	1.0	36
141	Role of AP-1 in the Coordinate Induction of Rat Glutamate-cysteine Ligase and Glutathione Synthetase bytert-Butylhydroquinone. Journal of Biological Chemistry, 2002, 277, 35232-35239.	1.6	35
142	S-adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes. Hepatology, 2010, 51, 2152-2161.	3.6	35
143	Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer. Experimental Cell Research, 2013, 319, 1902-1911.	1.2	35
144	Methionine Adenosyltransferase 2B, HuR, and Sirtuin 1 Protein Cross-talk Impacts on the Effect of Resveratrol on Apoptosis and Growth in Liver Cancer Cells. Journal of Biological Chemistry, 2013, 288, 23161-23170.	1.6	35

#	Article	IF	CITATIONS
145	Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2104-2109.	3.3	35
146	miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Molecular Metabolism, 2019, 29, 40-54.	3.0	35
147	Impaired liver regeneration in mice lacking glycine N-methyltransferase. Hepatology, 2009, 50, 443-452.	3.6	34
148	Role of Methionine Adenosyltransferase Genes in Hepatocarcinogenesis. Cancers, 2011, 3, 1480-1497.	1.7	34
149	Histone deacetylase 4 promotes cholestatic liver injury in the absence of prohibitinâ€1. Hepatology, 2015, 62, 1237-1248.	3.6	34
150	Dysregulation of glutathione synthesis in liver disease. Liver Research, 2020, 4, 64-73.	0.5	33
151	Role of Sâ€adenosylmethionine in two experimental models of pancreatitis. FASEB Journal, 2003, 17, 56-58.	0.2	32
152	Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of glutathione synthetic enzymes and contributes to cholestatic liver injury in mice. Hepatology, 2010, 51, 1291-1301.	3.6	32
153	Overview of extracellular microvesicles in drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 543-554.	1.5	32
154	Reciprocal Regulation Between Forkhead Box M1/NFâ€₽B and Methionine Adenosyltransferase 1A Drives Liver Cancer. Hepatology, 2020, 72, 1682-1700.	3.6	32
155	S-Adenosylmethionine Regulates Apurinic/Apyrimidinic Endonuclease 1 Stability: Implication in Hepatocarcinogenesis. Gastroenterology, 2009, 136, 1025-1036.	0.6	31
156	Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology, 2022, 76, 1121-1134.	3.6	31
157	Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis. Proteomics, 2005, 5, 4964-4972.	1.3	30
158	Novel Function and Intracellular Localization of Methionine Adenosyltransferase 2β Splicing Variants. Journal of Biological Chemistry, 2010, 285, 20015-20021.	1.6	29
159	Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochemical Journal, 2011, 436, 507-516.	1.7	29
160	TRAIL-producing NK cells contribute to liver injury and related fibrogenesis in the context of GNMT deficiency. Laboratory Investigation, 2015, 95, 223-236.	1.7	29
161	Inhibition of human methionine adenosyltransferase 1A transcription by coding region methylation. Journal of Cellular Physiology, 2012, 227, 1583-1591.	2.0	28
162	Methionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells. Oncotarget, 2015, 6, 37706-37723.	0.8	28

#	Article	IF	CITATIONS
163	Chemotherapy-associated liver injury in colorectal cancer. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482092419.	1.4	28
164	A morphological method for ammonia detection in liver. PLoS ONE, 2017, 12, e0173914.	1.1	28
165	Identification and characterization of an Nrf2â€mediated ARE upstream of the rat glutamate cysteine ligase catalytic subunit gene (<i>GCLC</i>). Journal of Cellular Biochemistry, 2009, 107, 944-954.	1.2	27
166	S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting microRNA 34a/b-methionine adenosyltransferase 2A/2B axis. Oncotarget, 2017, 8, 78851-78869.	0.8	27
167	Methionine Adenosyltransferase $\hat{l}\pm 1$ Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. Hepatology, 2019, 70, 2018-2034.	3.6	27
168	Effect of hepatocyte growth factor on methionine adenosyltransferase genes and growth is cell density-dependent in HepG2 cells. Journal of Cellular Physiology, 2007, 210, 766-773.	2.0	26
169	Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. Free Radical Biology and Medicine, 2014, 68, 148-158.	1.3	26
170	Glycine <i>N</i> â€methyltransferase expression in the hippocampus and its role in neurogenesis and cognitive performance. Hippocampus, 2014, 24, 840-852.	0.9	26
171	Stateâ€Level HCC Incidence and Association With Obesity and Physical Activity in the United States. Hepatology, 2021, 74, 1384-1394.	3.6	26
172	Cloning and Functional Characterization of the 5′-Flanking Region of Human Methionine Adenosyltransferase 2A Gene. Biochemical and Biophysical Research Communications, 1998, 248, 479-484.	1.0	25
173	Cloning and functional characterization of the 5′-flanking region of human methionine adenosyltransferase 1A gene. Biochemical Journal, 2000, 346, 475-482.	1.7	25
174	Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S61-S64.	1.4	25
175	Where are we in the chemoprevention of hepatocellular carcinoma?. Hepatology, 2009, 51, n/a-n/a.	3.6	25
176	Requirement of RIZ1 for Cancer Prevention by Methyl-Balanced Diet. PLoS ONE, 2008, 3, e3390.	1.1	24
177	RXRα-regulated liver SAMe and CSH levels influence susceptibility to alcohol-induced hepatotoxicity. Experimental and Molecular Pathology, 2003, 75, 194-200.	0.9	23
178	Coffee Drinking and Alcoholic and Nonalcoholic Fatty Liver Diseases and Viral Hepatitis in the Multiethnic Cohort. Clinical Gastroenterology and Hepatology, 2017, 15, 1305-1307.	2.4	22
179	A molecular signature for the metabolic syndrome by urine metabolomics. Cardiovascular Diabetology, 2021, 20, 155.	2.7	22
180	<i>S</i> -Adenosylmethionine and Methylthioadenosine Inhibit <i>β</i> -Catenin Signaling by Multiple Mechanisms in Liver and Colon Cancer. Molecular Pharmacology, 2015, 87, 77-86.	1.0	21

#	Article	IF	CITATIONS
181	Nonalcoholic Steatohepatitis, Animal Models, and Biomarkers: What Is New?. Methods in Molecular Biology, 2010, 593, 109-136.	0.4	21
182	Role of AMP-activated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration. Experimental Biology and Medicine, 2011, 236, 402-408.	1.1	20
183	Oral administration of PEGylated TLR7 ligand ameliorates alcohol-associated liver disease via the induction of IL-22. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020868118.	3.3	20
184	Prohibitin 1 Regulates the H19-Igf2 Axis and Proliferation in Hepatocytes. Journal of Biological Chemistry, 2016, 291, 24148-24159.	1.6	19
185	Prohibitin 1 in liver injury and cancer. Experimental Biology and Medicine, 2020, 245, 385-394.	1.1	19
186	Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis <i>via</i> AMPK and mTOR regulation. World Journal of Gastroenterology, 2020, 26, 5101-5117.	1.4	19
187	Molecular Profiling of Hepatocellular Carcinoma in Mice with a Chronic Deficiency of HepaticS-Adenosylmethionine:Â Relevance in Human Liver Diseases. Journal of Proteome Research, 2006, 5, 944-953.	1.8	18
188	Antioxidants in the treatment of chronic liver diseases: Why is the efficacy evidence so weak in humans?. Hepatology, 2008, 48, 1359-1361.	3.6	18
189	Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent. Experimental Cell Research, 2008, 314, 398-412.	1.2	18
190	Lysine and Arginine Protein Post-translational Modifications by Enhanced DIA Libraries: Quantification in Murine Liver Disease. Journal of Proteome Research, 2020, 19, 4163-4178.	1.8	18
191	Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nature Communications, 2022, 13, 557.	5.8	18
192	The role of c-Myb in the up-regulation of methionine adenosyltransferase 2A expression in activated Jurkat cells. Biochemical Journal, 2001, 353, 163-168.	1.7	17
193	High-Frequency Ultrasound Imaging for Longitudinal Evaluation of Non-Alcoholic Fatty Liver Disease Progression in Mice. Ultrasound in Medicine and Biology, 2011, 37, 1161-1169.	0.7	17
194	Comparison of Surgical Resection and Systemic Treatment for Hepatocellular Carcinoma with Vascular Invasion: National Cancer Database Analysis. Liver Cancer, 2021, 10, 407-418.	4.2	17
195	Sâ€adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells. Hepatology, 2022, 75, 280-296.	3.6	17
196	Systems biology for hepatologists. Hepatology, 2014, 60, 736-743.	3.6	15
197	The mitochondrial chaperone Prohibitin 1 negatively regulates interleukin-8 in human liver cancers. Journal of Biological Chemistry, 2019, 294, 1984-1996.	1.6	15
198	Where are we in the search for noninvasive nonalcoholic steatohepatitis biomarkers?. Hepatology, 2011. 54. 1115-1117.	3.6	14

#	Article	IF	CITATIONS
199	PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. Journal of the American Society for Mass Spectrometry, 2020, 31, 1410-1421.	1.2	14
200	Prohibitin 1 Acts As a Negative Regulator of Wingless/Integratedâ€Betaâ€Catenin Signaling in Murine Liver and Human Liver Cancer Cells. Hepatology Communications, 2018, 2, 1583-1600.	2.0	13
201	Metabolic Landscape of the Mouse Liver by Quantitative 31P Nuclear Magnetic Resonance Analysis of the Phosphorome. Hepatology, 2021, 74, 148-163.	3.6	13
202	Nonalcoholic fatty liver disease prevalence and severity in Asian Americans from the national health and nutrition examination surveys 2017–2018. Hepatology Communications, 2022, 6, 2253-2261.	2.0	13
203	The Hepatocarcinogenic Effect of Methionine and Choline Deficient Diets: An Adaptation to the Warburg Effect?. Alcoholism: Clinical and Experimental Research, 2011, 35, 811-814.	1.4	12
204	The RNA-Binding Protein Human Antigen R Controls Global Changes in Gene Expression during Schwann Cell Development. Journal of Neuroscience, 2012, 32, 4944-4958.	1.7	12
205	Hepatocellular Carcinoma: Updates in Pathogenesis, Detection and Treatment. Cancers, 2020, 12, 2729.	1.7	12
206	Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III. Journal of Proteomics, 2012, 75, 2855-2868.	1.2	11
207	S-Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. European Journal of Cell Biology, 2011, 90, 312-322.	1.6	10
208	Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death and Disease, 2021, 12, 555.	2.7	10
209	Subâ€proteome approach to the knowledge of liver. Proteomics - Clinical Applications, 2010, 4, 407-415.	0.8	9
210	Liver cancer-associated changes to the proteome: what deserves clinical focus?. Expert Review of Proteomics, 2018, 15, 749-756.	1.3	9
211	Transarterial Radioembolization Versus Systemic Treatment for Hepatocellular Carcinoma with Macrovascular Invasion: Analysis of the U.S. National Cancer Database. Journal of Nuclear Medicine, 2021, 62, 1692-1701.	2.8	9
212	Boosting mitochondria activity by silencing MCJ overcomes cholestasis-induced liver injury. JHEP Reports, 2021, 3, 100276.	2.6	5
213	Deregulated 14-3-3î¶ and methionine adenosyltransferase α1 interplay promotes liver cancer tumorigenesis in mice and humans. Oncogene, 2021, 40, 5866-5879.	2.6	5
214	Increase in Alcoholic Hepatitis as an Etiology for Liver Transplantation in the United States: A 2004–2018 Analysis. Transplantation Direct, 2020, 6, e612.	0.8	5
215	Factors Associated With Detection and Survival of T1 Hepatocellular Carcinoma in the United States: National Cancer Database Analysis. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1210-1220.	2.3	5
216	Cloning and functional characterization of the 5′-flanking region of human methionine adenosyltransferase 1A gene. Biochemical Journal, 2000, 346, 475.	1.7	4

#	Article	IF	CITATIONS
217	Silencing of human methionine adenosyltransferase 1A expression by methylation of the coding region. Journal of Biological Chemistry, 2004, , .	1.6	4
218	Emerging Circulating Biomarkers for TheÂDiagnosis and Assessment of Treatment Responses in Patients with Hepatic Fat Accumulation, Nash and Liver Fibrosis. , 2019, , 423-448.		4
219	Cystic Diseases of the Liver and Biliary Tract. , 0, , 2009-2021.		1
220	Methionine adenosyltransferase 2B, HuR, and sirtuin 1 protein cross-talk impacts on the effect of resveratrol on apoptosis and growth in liver cancer cells Journal of Biological Chemistry, 2014, 289, 696.	1.6	1
221	Liver receptor homolog 1 and transmethylation fluxes in nonalcoholic steatohepatitis. Hepatology, 2016, 63, 17-19.	3.6	1
222	FRI-343-NEDDylation inhibition as a new potential therapy of non-alcoholic fatty liver disease. Journal of Hepatology, 2019, 70, e546.	1.8	1
223	Cystic Diseases of the Liver and Biliary Tract. , 0, , 361-367.		1
224	S-Adenosylmethionine. , 2004, , 1-6.		1
225	S-Adenosylmethionine. , 2010, , 1-6.		1
226	Targeting Hepatic Glutaminase 1 Ameliorates Non-Alcoholic Steatohepatitis by Restoring Disrupted Hepatic Very-Low Density Lipoproteins Triglyceride Assembly. SSRN Electronic Journal, 0, , .	0.4	1
227	Role of S-Adenosyl-L-Methionine in Alcohol-Associated Liver Cancer. , 2006, , 160-174.		0
228	Requirement of RIZ1 for cancer prevention by methyl-balanced diet. Nature Precedings, 2008, , .	0.1	0
229	Reply:. Hepatology, 2009, 49, 2131-2131.	3.6	0
230	Reply to High hepatocellular carcinoma risk among USâ€born Hispanics. Cancer, 2017, 123, 358-359.	2.0	0
231	FRI-353-Metabolic implications of methionine adenosyltransferase 1A depletion during fasting. Journal of Hepatology, 2019, 70, e550.	1.8	0
232	FRI-294-Mitochondrial GNMT-complex II is recovered by miR-873-5p targeting in NAFLD. Journal of Hepatology, 2019, 70, e524-e525.	1.8	0
233	PS-034-MCJ: A therapeutic target in hepatic ischemia and reperfusion injury. Journal of Hepatology, 2019, 70, e23-e24.	1.8	0
234	S-Adenosylmethionine and Methionine Adenosyltransferase Genes. , 2006, , 93-111.		0

14

#	Article	IF	CITATIONS
235	Methionine Adenosyltransferase 2A Positively Regulates Bclâ€2 Expression in a Ubiquitinâ€Conjugating Enzyme 9â€Dependent Manner. FASEB Journal, 2012, 26, 145.10.	0.2	ο
236	The Prolyl Isomerase PIN1 Impairs Methionine Adenosyltransferase α1 Mitochondrial Targeting in Alcoholic Liver Disease. FASEB Journal, 2020, 34, 1-1.	0.2	0
237	Cystic Diseases of the Liver and Biliary Tract. , 0, , 599-605.		0