Shelly C Lu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8199971/shelly-c-lu-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 15,527 117 225 h-index g-index citations papers 17,815 6.9 240 7.11 ext. citations avg, IF L-index ext. papers

#	Paper	IF	Citations
225	Regulation of glutathione synthesis. <i>Molecular Aspects of Medicine</i> , 2009 , 30, 42-59	16.7	1225
224	Glutathione synthesis. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 3143-53	4	978
223	Regulation of hepatic glutathione synthesis: current concepts and controversies. <i>FASEB Journal</i> , 1999 , 13, 1169-1183	0.9	665
222	Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. Journal of Proteome Research, 2008 , 7, 5157-66	5.6	427
221	S-Adenosylmethionine: a control switch that regulates liver function. <i>FASEB Journal</i> , 2002 , 16, 15-26	0.9	346
220	S-Adenosylmethionine. International Journal of Biochemistry and Cell Biology, 2000, 32, 391-5	5.6	330
219	S-adenosylmethionine in liver health, injury, and cancer. <i>Physiological Reviews</i> , 2012 , 92, 1515-42	47.9	313
218	Current concepts in the pathogenesis of alcoholic liver injury. FASEB Journal, 2001, 15, 1335-49	0.9	306
217	Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. <i>Journal of Hepatology</i> , 2000 , 33, 907-14	13.4	273
216	Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. <i>FASEB Journal</i> , 2002 , 16, 1292-4	0.9	236
215	NASH Leading Cause of Liver Transplant in Women: Updated Analysis of Indications For Liver Transplant and Ethnic and Gender Variances. <i>American Journal of Gastroenterology</i> , 2018 , 113, 1649-165	§ :7	230
214	Role of S-adenosyl-L-methionine in liver health and injury. <i>Hepatology</i> , 2007 , 45, 1306-12	11.2	224
213	Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2008 , 47, 1191-9	11.2	220
212	Methionine metabolism and liver disease. <i>Annual Review of Nutrition</i> , 2008 , 28, 273-93	9.9	210
211	Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. <i>Molecular and Cellular Biology</i> , 2005 , 25, 5933-46	4.8	185
210	S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6489-94	11.5	176
209	Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: The multiethnic cohort. <i>Hepatology</i> , 2016 , 64, 1969-1977	11.2	175

(2013-2008)

208	Emerging role of epigenetics in the actions of alcohol. <i>Alcoholism: Clinical and Experimental Research</i> , 2008 , 32, 1525-34	3.7	169	
207	Regulation of glutathione synthesis. Current Topics in Cellular Regulation, 2000, 36, 95-116		167	
206	Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. <i>FASEB Journal</i> , 2001 , 15, 19-21	0.9	157	
205	S-Adenosylmethionine in cell growth, apoptosis and liver cancer. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2008 , 23 Suppl 1, S73-7	4	141	
204	Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. <i>American Journal of Clinical Nutrition</i> , 2007 , 86, 14-24	7	140	
203	Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 3065-70	11.5	140	
202	Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis. <i>Gastroenterology</i> , 2017 , 152, 1449-1461.e7	13.3	139	
201	Methylthioadenosine. International Journal of Biochemistry and Cell Biology, 2004, 36, 2125-30	5.6	137	
200	Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. <i>American Journal of Physiology - Renal Physiology</i> , 2000 , 279, G178-85	5.1	135	
199	Abnormal hepatic methionine and glutathione metabolism in patients with alcoholic hepatitis. <i>Alcoholism: Clinical and Experimental Research</i> , 2004 , 28, 173-81	3.7	126	
198	Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. <i>Hepatology</i> , 2010 , 52, 945-53	11.2	125	
197	Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. <i>Journal of Proteome Research</i> , 2010 , 9, 4501-12	5.6	119	
196	Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. <i>Alcohol</i> , 2005 , 35, 227-34	2.7	119	
195	S-adenosylmethionine metabolism and liver disease. <i>Annals of Hepatology</i> , 2013 , 12, 183-189	3.1	116	
194	Differential regulation of gamma-glutamylcysteine synthetase heavy and light subunit gene expression. <i>Biochemical Journal</i> , 1997 , 326 (Pt 1), 167-72	3.8	114	
193	S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. <i>Hepatology</i> , 2002 , 35, 274-80	11.2	111	
192	Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. <i>Gastroenterology</i> , 2015 , 148, 118-25; quiz e15	13.3	109	
191	MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. Journal of Clinical Investigation, 2013 , 123, 285-98	15.9	104	

190	Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. <i>Proteomics - Clinical Applications</i> , 2010 , 4, 416-25	3.1	99
189	HuR/methyl-HuR and AUF1 regulate the MAT expressed during liver proliferation, differentiation, and carcinogenesis. <i>Gastroenterology</i> , 2010 , 138, 1943-53	13.3	95
188	Regulation of gamma-glutamylcysteine synthetase by protein phosphorylation. <i>Biochemical Journal</i> , 1996 , 320 (Pt 1), 321-8	3.8	95
187	Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. <i>Hepatology</i> , 2012 , 55, 1237-48	11.2	89
186	Non-alcoholic steatohepatitis and animal models: understanding the human disease. <i>International Journal of Biochemistry and Cell Biology</i> , 2009 , 41, 969-76	5.6	88
185	S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. <i>Hepatology</i> , 2008 , 47, 1655-66	11.2	88
184	Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2010 , 52, 2096-108	11.2	84
183	Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. <i>Hepatology</i> , 2013 , 58, 1296-305	11.2	81
182	S-adenosylmethionine regulates cytoplasmic HuR via AMP-activated kinase. <i>Gastroenterology</i> , 2006 , 131, 223-32	13.3	81
181	Alcohol, DNA methylation, and cancer 2013 , 35, 25-35		81
181	Alcohol, DNA methylation, and cancer 2013 , 35, 25-35 CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> , 2009 , 49, 1277-86	11.2	8 ₁
	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> ,	0.9	
180	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> , 2009 , 49, 1277-86 Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during		79
180 179	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> , 2009 , 49, 1277-86 Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. <i>FASEB Journal</i> , 2000 , 14, 95-102	0.9	79 79
180 179 178	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> , 2009 , 49, 1277-86 Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. <i>FASEB Journal</i> , 2000 , 14, 95-102 Changes in glutathione homeostasis during liver regeneration in the rat. <i>Hepatology</i> , 1998 , 27, 147-53	0.9	79 79 78
180 179 178	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> , 2009 , 49, 1277-86 Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. <i>FASEB Journal</i> , 2000 , 14, 95-102 Changes in glutathione homeostasis during liver regeneration in the rat. <i>Hepatology</i> , 1998 , 27, 147-53 Role of abnormal methionine metabolism in alcoholic liver injury. <i>Alcohol</i> , 2002 , 27, 155-62 Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient	0.9	79 79 78 78
180 179 178 177	CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. <i>Hepatology</i> , 2009 , 49, 1277-86 Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. <i>FASEB Journal</i> , 2000 , 14, 95-102 Changes in glutathione homeostasis during liver regeneration in the rat. <i>Hepatology</i> , 1998 , 27, 147-53 Role of abnormal methionine metabolism in alcoholic liver injury. <i>Alcohol</i> , 2002 , 27, 155-62 Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. <i>Hepatology</i> , 2008 , 47, 1288-97 S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: Role of protein	0.9 11.2 2.7 11.2	79 79 78 78 74

(2004-2007)

172	Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. <i>Gastroenterology</i> , 2007 , 133, 207-18	13.3	72	
171	5Qmethylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. <i>Hepatology</i> , 2004 , 39, 1088-98	11.2	71	
170	Regulation of hepatic glutathione synthesis. Seminars in Liver Disease, 1998, 18, 331-43	7.3	71	
169	Dysregulation of glutathione synthesis during cholestasis in mice: molecular mechanisms and therapeutic implications. <i>Hepatology</i> , 2009 , 49, 1982-91	11.2	69	
168	Leptin@mitogenic effect in human liver cancer cells requires induction of both methionine adenosyltransferase 2A and 2beta. <i>Hepatology</i> , 2008 , 47, 521-31	11.2	68	
167	Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. <i>Hepatology</i> , 2021 , 73, 422-4	3 ^{11.2}	68	
166	Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. <i>Experimental Biology and Medicine</i> , 2015 , 240, 809-20	3.7	67	
165	Genetic polymorphisms in the methylenetetrahydrofolate reductase and thymidylate synthase genes and risk of hepatocellular carcinoma. <i>Hepatology</i> , 2007 , 46, 749-58	11.2	67	
164	MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. <i>Hepatology</i> , 2013 , 57, 2299-313	11.2	64	
163	Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. <i>Hepatology</i> , 2010 , 52, 105-14	11.2	64	
162	Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A. <i>FASEB Journal</i> , 2004 , 18, 914-6	0.9	64	
161	Tumour necrosis factor alpha induces co-ordinated activation of rat GSH synthetic enzymes via nuclear factor kappaB and activator protein-1. <i>Biochemical Journal</i> , 2005 , 391, 399-408	3.8	64	
160	Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. <i>Hepatology Communications</i> , 2018 , 2, 807-820	6	64	
159	Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density lipoprotein assembly in mice. <i>Hepatology</i> , 2011 , 54, 1975-86	11.2	63	
158	Human antigen R contributes to hepatic stellate cell activation and liver fibrosis. <i>Hepatology</i> , 2012 , 56, 1870-82	11.2	62	
157	Role of Aramchol in steatohepatitis and fibrosis in mice. <i>Hepatology Communications</i> , 2017 , 1, 911-927	6	61	
156	L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. <i>Journal of Biological Chemistry</i> , 2003 , 278, 19885-90	5.4	61	
155	Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. <i>Molecular Pharmacology</i> , 2004 , 65, 550-7	4.3	59	

154	Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice. <i>Carcinogenesis</i> , 2012 , 33, 427-35	4.6	58
153	Inhibition of human betaine-homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. <i>Biochemical Journal</i> , 2007 , 401, 87-96	3.8	58
152	Evidence for LKB1/AMP-activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. <i>Hepatology</i> , 2009 , 49, 608-17	11.2	57
151	Cloning and characterization of the human glutathione synthetase 5@flanking region. <i>Biochemical Journal</i> , 2005 , 390, 521-8	3.8	57
150	The role of c-Myb and Sp1 in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma. <i>FASEB Journal</i> , 2001 , 15, 1507-16	0.9	57
149	Effect of ethanol and high-fat feeding on hepatic gamma-glutamylcysteine synthetase subunit expression in the rat. <i>Hepatology</i> , 1999 , 30, 209-14	11.2	57
148	S-adenosylmethionine levels regulate the schwann cell DNA methylome. <i>Neuron</i> , 2014 , 81, 1024-1039	13.9	56
147	S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. <i>Hepatology</i> , 2012 , 56, 982-93	11.2	56
146	Expression pattern, regulation, and functions of methionine adenosyltransferase 2beta splicing variants in hepatoma cells. <i>Gastroenterology</i> , 2008 , 134, 281-91	13.3	56
145	Inhibition of lipopolysaccharide-stimulated TNF-alpha promoter activity by S-adenosylmethionine and 5@methylthioadenosine. <i>American Journal of Physiology - Renal Physiology</i> , 2004 , 287, G352-62	5.1	56
144	S-adenosylmethionine metabolism and liver disease. <i>Annals of Hepatology</i> , 2013 , 12, 183-9	3.1	56
143	Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. <i>Oncotarget</i> , 2015 , 6, 2509-23	3.3	55
142	Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. <i>Metabolomics</i> , 2012 , 8, 997-1011	4.7	55
141	Effect of thioacetamide on the hepatic expression of gamma-glutamylcysteine synthetase subunits in the Rat. <i>Toxicology and Applied Pharmacology</i> , 1999 , 159, 161-8	4.6	55
140	Hepatocyte growth factor induces MAT2A expression and histone acetylation in rat hepatocytes: role in liver regeneration. <i>FASEB Journal</i> , 2001 , 15, 1248-50	0.9	53
139	Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis. <i>Hepatology</i> , 2010 , 52, 1621-31	11.2	52
138	Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. <i>Journal of Proteomics</i> , 2014 , 103, 227-40	3.9	50
137	Inducers of gamma-glutamylcysteine synthetase and their effects on glutathione synthetase expression. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 2000 , 1493, 48-55		50

136	Changes in methionine adenosyltransferase during liver regeneration in the rat. <i>American Journal of Physiology - Renal Physiology</i> , 1998 , 275, G14-21	5.1	50	
135	Differential effect of thioacetamide on hepatic methionine adenosyltransferase expression in the rat. <i>Hepatology</i> , 1999 , 29, 1471-8	11.2	50	
134	S-Adenosylmethionine and methylthioadenosine inhibit cellular FLICE inhibitory protein expression and induce apoptosis in colon cancer cells. <i>Molecular Pharmacology</i> , 2009 , 76, 192-200	4.3	48	
133	Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. <i>World Journal of Gastroenterology</i> , 2019 , 25, 3009-3020	5.6	47	
132	Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. <i>Antioxidants and Redox Signaling</i> , 2015 , 22, 259-74	8.4	47	
131	Inhibition of natural killer cells protects the liver against acute injury in the absence of glycine N-methyltransferase. <i>Hepatology</i> , 2012 , 56, 747-59	11.2	47	
130	Changes in the expression of methionine adenosyltransferase genes and S-adenosylmethionine homeostasis during hepatic stellate cell activation. <i>Hepatology</i> , 2010 , 51, 986-95	11.2	46	
129	15-Deoxy-Delta12,14-prostaglandin J(2) protects against nitrosative PC12 cell death through up-regulation of intracellular glutathione synthesis. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46263-70	₎ 5.4	46	
128	The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. <i>Nature Communications</i> , 2017 , 8, 2068	17.4	45	
127	Cloning and characterization of the 5?-flanking region of the rat glutamate-cysteine ligase catalytic subunit. <i>Biochemical Journal</i> , 2001 , 357, 447-455	3.8	45	
126	Changes in S-adenosylmethionine and GSH homeostasis during endotoxemia in mice. <i>Laboratory Investigation</i> , 2008 , 88, 1121-9	5.9	44	
125	Identification of a gene-pathway associated with non-alcoholic steatohepatitis. <i>Journal of Hepatology</i> , 2007 , 46, 708-18	13.4	44	
124	Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. <i>Journal of Hepatology</i> , 2016 , 64, 409-418	13.4	43	
123	Mechanism and significance of changes in glutamate-cysteine ligase expression during hepatic fibrogenesis. <i>Journal of Biological Chemistry</i> , 2012 , 287, 36341-55	5.4	43	
122	Alcohol, cofactors and the genetics of hepatocellular carcinoma. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2008 , 23 Suppl 1, S92-7	4	43	
121	Induction of human methionine adenosyltransferase 2A expression by tumor necrosis factor alpha. Role of NF-kappa B and AP-1. <i>Journal of Biological Chemistry</i> , 2003 , 278, 50887-96	5.4	43	
120	Role of promoter methylation in increased methionine adenosyltransferase 2A expression in human liver cancer. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 280, G184-90	5.1	43	
119	Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes. <i>Biochemical Pharmacology</i> , 1994 , 47, 859-69	6	43	

118	Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	42
117	Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer. <i>Gastroenterology</i> , 2018 , 155, 557-571.e14	13.3	41
116	Switch from Mnt-Max to Myc-Max induces p53 and cyclin D1 expression and apoptosis during cholestasis in mouse and human hepatocytes. <i>Hepatology</i> , 2009 , 49, 860-70	11.2	40
115	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52	5.1	40
114	Forced expression of methionine adenosyltransferase 1A in human hepatoma cells suppresses in vivo tumorigenicity in mice. <i>American Journal of Pathology</i> , 2010 , 176, 2456-66	5.8	39
113	Betaine prevents Mallory-Denk body formation in drug-primed mice by epigenetic mechanisms. Experimental and Molecular Pathology, 2009 , 86, 77-86	4.4	39
112	Non-alcoholic fatty liver disease proteomics. <i>Proteomics - Clinical Applications</i> , 2010 , 4, 362-71	3.1	38
111	Epigallocatechin-3-gallate inhibits growth of activated hepatic stellate cells by enhancing the capacity of glutathione synthesis. <i>Molecular Pharmacology</i> , 2008 , 73, 1465-73	4.3	38
110	Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. <i>Experimental Biology and Medicine</i> , 2018 , 243, 107-117	3.7	38
109	Current status of hepatocellular carcinoma detection: screening strategies and novel biomarkers. <i>Therapeutic Advances in Medical Oncology</i> , 2019 , 11, 1758835919869120	5.4	36
108	Keratin mutation primes mouse liver to oxidative injury. <i>Hepatology</i> , 2005 , 41, 517-25	11.2	36
107	Cloning and characterization of the 5Qflanking region of the rat glutamate-cysteine ligase catalytic subunit. <i>Biochemical Journal</i> , 2001 , 357, 447-55	3.8	36
106	Diabetes and racial/ethnic differences in hepatocellular carcinoma risk: the multiethnic cohort. Journal of the National Cancer Institute, 2014 , 106,	9.7	34
105	Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1. <i>Gastroenterology</i> , 2012 , 143, 787-798.e13	13.3	34
104	Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. <i>Hepatology</i> , 2017 , 65, 1249-1266	11.2	32
103	Methionine adenosyltransferase 2B-GIT1 complex serves as a scaffold to regulate Ras/Raf/MEK1/2 activity in human liver and colon cancer cells. <i>American Journal of Pathology</i> , 2015 , 185, 1135-44	5.8	32
102	Role of AP-1 in the coordinate induction of rat glutamate-cysteine ligase and glutathione synthetase by tert-butylhydroquinone. <i>Journal of Biological Chemistry</i> , 2002 , 277, 35232-9	5.4	32
101	NOD-like receptor C4 Inflammasome Regulates the Growth of Colon Cancer Liver Metastasis in NAFLD. <i>Hepatology</i> , 2019 , 70, 1582-1599	11.2	31

(2010-2016)

100	Sex and Ethnic Differences in the Association of Obesity With Risk of Hepatocellular Carcinoma. <i>Clinical Gastroenterology and Hepatology</i> , 2016 , 14, 309-16	6.9	31	
99	Structure and function study of the complex that synthesizes S-adenosylmethionine. <i>IUCrJ</i> , 2014 , 1, 240)- .9 .7	31	
98	S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. <i>Journal of Hepatology</i> , 2015 , 62, 673-81	13.4	31	
97	Impaired liver regeneration in mice lacking glycine N-methyltransferase. <i>Hepatology</i> , 2009 , 50, 443-52	11.2	31	
96	Disparity in liver cancer incidence and chronic liver disease mortality by nativity in Hispanics: The Multiethnic Cohort. <i>Cancer</i> , 2016 , 122, 1444-52	6.4	30	
95	S-adenosylmethionine regulates apurinic/apyrimidinic endonuclease 1 stability: implication in hepatocarcinogenesis. <i>Gastroenterology</i> , 2009 , 136, 1025-36	13.3	30	
94	Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis. <i>Proteomics</i> , 2005 , 5, 4964-72	4.8	30	
93	Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer. Experimental Cell Research, 2013 , 319, 1902-1911	4.2	29	
92	Overview of extracellular microvesicles in drug metabolism. <i>Expert Opinion on Drug Metabolism and Toxicology</i> , 2010 , 6, 543-54	5.5	29	
91	S-adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes. <i>Hepatology</i> , 2010 , 51, 2152-61	11.2	29	
90	Deregulated neddylation in liver fibrosis. <i>Hepatology</i> , 2017 , 65, 694-709	11.2	28	
89	Role of S-adenosylmethionine in two experimental models of pancreatitis. FASEB Journal, 2003, 17, 56-8	80.9	28	
88	MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. <i>Cell Death and Disease</i> , 2018 , 9, 958	9.8	28	
87	Methionine adenosyltransferase 2B, HuR, and sirtuin 1 protein cross-talk impacts on the effect of resveratrol on apoptosis and growth in liver cancer cells. <i>Journal of Biological Chemistry</i> , 2013 , 288, 2310	6 ⁵ 1 ⁻⁴ 70	27	
86	Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals. <i>World Journal of Gastroenterology</i> , 2018 , 24, 1269-1277	5.6	27	
85	Deregulated methionine adenosyltransferase II, c-Myc, and Maf proteins together promote cholangiocarcinoma growth in mice and humans (II <i>Hepatology</i> , 2016 , 64, 439-55	11.2	27	
84	Role of methionine adenosyltransferase genes in hepatocarcinogenesis. <i>Cancers</i> , 2011 , 3, 1480-97	6.6	26	
83	Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of glutathione synthetic enzymes and contributes to cholestatic liver injury in mice. <i>Hepatology</i> , 2010 , 51, 1291-301	11.2	26	

82	MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. <i>Free Radical Biology and Medicine</i> , 2016 , 100, 66-72	7.8	26
81	Methionine adenosyltransferases in liver health and diseases. <i>Liver Research</i> , 2017 , 1, 103-111	4.1	25
80	Histone deacetylase 4 promotes cholestatic liver injury in the absence of prohibitin-1. <i>Hepatology</i> , 2015 , 62, 1237-48	11.2	25
79	Novel function and intracellular localization of methionine adenosyltransferase 2beta splicing variants. <i>Journal of Biological Chemistry</i> , 2010 , 285, 20015-21	5.4	25
78	Effect of hepatocyte growth factor on methionine adenosyltransferase genes and growth is cell density-dependent in HepG2 cells. <i>Journal of Cellular Physiology</i> , 2007 , 210, 766-73	7	25
77	Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. <i>Cell Metabolism</i> , 2020 , 31, 605-622.e10	24.6	24
76	Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2104-9	11.5	24
75	Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. <i>Free Radical Biology and Medicine</i> , 2014 , 68, 148-58	7.8	24
74	Inhibition of human methionine adenosyltransferase 1A transcription by coding region methylation. <i>Journal of Cellular Physiology</i> , 2012 , 227, 1583-91	7	24
73	Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. <i>Biochemical Journal</i> , 2011 , 436, 507-16	3.8	23
72	Cloning and functional characterization of the 5Qflanking region of human methionine adenosyltransferase 2A gene. <i>Biochemical and Biophysical Research Communications</i> , 1998 , 248, 479-84	3.4	23
71	Requirement of RIZ1 for cancer prevention by methyl-balanced diet. <i>PLoS ONE</i> , 2008 , 3, e3390	3.7	22
70	S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting microRNA 34a/b-methionine adenosyltransferase 2A/2B axis. <i>Oncotarget</i> , 2017 , 8, 78851-78869	3.3	21
69	TRAIL-producing NK cells contribute to liver injury and related fibrogenesis in the context of GNMT deficiency. <i>Laboratory Investigation</i> , 2015 , 95, 223-36	5.9	21
68	Identification and characterization of an Nrf2-mediated ARE upstream of the rat glutamate cysteine ligase catalytic subunit gene (GCLC). <i>Journal of Cellular Biochemistry</i> , 2009 , 107, 944-54	4.7	21
67	Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2006 , 21 Suppl 3, S61-4	4	20
66	RXRalpha-regulated liver SAMe and GSH levels influence susceptibility to alcohol-induced hepatotoxicity. <i>Experimental and Molecular Pathology</i> , 2003 , 75, 194-200	4.4	20
65	Methionine adenosyltransferases in liver cancer. World Journal of Gastroenterology, 2019 , 25, 4300-431	95.6	20

(2001-2010)

64	Nonalcoholic steatohepatitis, animal models, and biomarkers: what is new?. <i>Methods in Molecular Biology</i> , 2010 , 593, 109-36	1.4	20
63	S-Adenosylmethionine and methylthioadenosine inhibit Etatenin signaling by multiple mechanisms in liver and colon cancer. <i>Molecular Pharmacology</i> , 2015 , 87, 77-86	4.3	19
62	Reciprocal Regulation Between Forkhead Box M1/NF- B and Methionine Adenosyltransferase 1A Drives Liver Cancer. <i>Hepatology</i> , 2020 , 72, 1682-1700	11.2	19
61	Methionine adenosyltransferase I sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells. <i>Oncotarget</i> , 2015 , 6, 37706-23	3.3	19
60	Cloning and functional characterization of the 5?-flanking region of human methionine adenosyltransferase 1A gene. <i>Biochemical Journal</i> , 2000 , 346, 475-482	3.8	19
59	Molecular profiling of hepatocellular carcinoma in mice with a chronic deficiency of hepatic s-adenosylmethionine: relevance in human liver diseases. <i>Journal of Proteome Research</i> , 2006 , 5, 944-53	5.6	18
58	A morphological method for ammonia detection in liver. <i>PLoS ONE</i> , 2017 , 12, e0173914	3.7	18
57	Coffee Drinking and Alcoholic and Nonalcoholic Fatty Liver Diseases and Viral Hepatitis in the Multiethnic Cohort. <i>Clinical Gastroenterology and Hepatology</i> , 2017 , 15, 1305-1307	6.9	17
56	miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. <i>Molecular Metabolism</i> , 2019 , 29, 40-54	8.8	17
55	Glycine N-methyltransferase expression in the hippocampus and its role in neurogenesis and cognitive performance. <i>Hippocampus</i> , 2014 , 24, 840-52	3.5	17
54	Role of AMP-activated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration. <i>Experimental Biology and Medicine</i> , 2011 , 236, 402-8	3.7	17
53	Prohibitin 1 Regulates the H19-Igf2 Axis and Proliferation in Hepatocytes. <i>Journal of Biological Chemistry</i> , 2016 , 291, 24148-24159	5.4	17
52	Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent. <i>Experimental Cell Research</i> , 2008 , 314, 398-412	4.2	16
51	Dysregulation of glutathione synthesis in liver disease. <i>Liver Research</i> , 2020 , 4, 64-73	4.1	14
50	High-frequency ultrasound imaging for longitudinal evaluation of non-alcoholic fatty liver disease progression in mice. <i>Ultrasound in Medicine and Biology</i> , 2011 , 37, 1161-9	3.5	14
49	Cloning and analysis of the rat glutamate-cysteine ligase modifier subunit promoter. <i>Biochemical and Biophysical Research Communications</i> , 2001 , 285, 476-82	3.4	14
48	Antioxidants in the treatment of chronic liver diseases: why is the efficacy evidence so weak in humans?. <i>Hepatology</i> , 2008 , 48, 1359-61	11.2	13
47	The role of c-Myb in the up-regulation of methionine adenosyltransferase 2A expression in activated Jurkat cells. <i>Biochemical Journal</i> , 2001 , 353, 163-168	3.8	13

46	The hepatocarcinogenic effect of methionine and choline deficient diets: an adaptation to the Warburg effect?. <i>Alcoholism: Clinical and Experimental Research</i> , 2011 , 35, 811-4	3.7	12
45	Chemotherapy-associated liver injury in colorectal cancer. <i>Therapeutic Advances in Gastroenterology</i> , 2020 , 13, 1756284820924194	4.7	11
44	Incidence of Pancreatic Cancer by Age and Sex in the US, 2000-2018. <i>JAMA - Journal of the American Medical Association</i> , 2021 , 326, 2075-2077	27.4	11
43	The mitochondrial chaperone Prohibitin 1 negatively regulates interleukin-8 in human liver cancers. Journal of Biological Chemistry, 2019 , 294, 1984-1996	5.4	11
42	Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III: Characterization of DDX3X as a target of S-adenosylmethionine. <i>Journal of Proteomics</i> , 2012 , 75, 2855-	- 68 -9	10
41	Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis AMPK and mTOR regulation. <i>World Journal of Gastroenterology</i> , 2020 , 26, 5101-5117	5.6	10
40	Methionine Adenosyltransferase II Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. <i>Hepatology</i> , 2019 , 70, 2018-2034	11.2	9
39	Systems biology for hepatologists. <i>Hepatology</i> , 2014 , 60, 736-43	11.2	9
38	The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58	6.6	9
37	S-Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. <i>European Journal of Cell Biology</i> , 2011 , 90, 312-22	6.1	9
36	Oral administration of PEGylated TLR7 ligand ameliorates alcohol-associated liver disease via the induction of IL-22. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	9
35	Where are we in the search for noninvasive nonalcoholic steatohepatitis biomarkers?. <i>Hepatology</i> , 2011 , 54, 1115-7	11.2	8
34	Sub-proteome approach to the knowledge of liver. <i>Proteomics - Clinical Applications</i> , 2010 , 4, 407-15	3.1	8
33	Prohibitin 1 Acts As a Negative Regulator of Wingless/Integrated-Beta-Catenin Signaling in Murine Liver and Human Liver Cancer Cells. <i>Hepatology Communications</i> , 2018 , 2, 1583-1600	6	8
32	Lysine and Arginine Protein Post-translational Modifications by Enhanced DIA Libraries: Quantification in Murine Liver Disease. <i>Journal of Proteome Research</i> , 2020 , 19, 4163-4178	5.6	7
31	Metabolic Landscape of the Mouse Liver by Quantitative P Nuclear Magnetic Resonance Analysis of the Phosphorome. <i>Hepatology</i> , 2021 , 74, 148-163	11.2	6
30	State-Level HCC Incidence and Association With Obesity and Physical Activity in the United States. Hepatology, 2021 , 74, 1384-1394	11.2	6
29	The Mortality and Overall Survival Trends of Primary Liver Cancer in the United States. <i>Journal of the National Cancer Institute</i> , 2021 , 113, 1531-1541	9.7	6

28	Liver cancer-associated changes to the proteome: what deserves clinical focus?. <i>Expert Review of Proteomics</i> , 2018 , 15, 749-756	4.2	6
27	Modeling alcohol-associated liver disease in a human Liver-Chip. <i>Cell Reports</i> , 2021 , 36, 109393	10.6	6
26	Emerging Circulating Biomarkers for The Diagnosis and Assessment of Treatment Responses in Patients with Hepatic Fat Accumulation, Nash and Liver Fibrosis 2019 , 423-448		4
25	Prohibitin 1 in liver injury and cancer. Experimental Biology and Medicine, 2020, 245, 385-394	3.7	4
24	Cloning and functional characterization of the 5?-flanking region of human methionine adenosyltransferase 1A gene. <i>Biochemical Journal</i> , 2000 , 346, 475	3.8	4
23	A molecular signature for the metabolic syndrome by urine metabolomics. <i>Cardiovascular Diabetology</i> , 2021 , 20, 155	8.7	4
22	PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 1410-1421	3.5	3
21	Factors Associated With Detection and Survival of T1 Hepatocellular Carcinoma in the United States: National Cancer Database Analysis. <i>Journal of the National Comprehensive Cancer Network: JNCCN</i> , 2020 , 18, 1210-1220	7.3	3
20	S-Adenosylmethionine Inhibits La Ribonucleoprotein Domain Family Member 1 in Murine Liver and Human Liver Cancer Cells. <i>Hepatology</i> , 2021 ,	11.2	3
19	Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. <i>Cell Death and Disease</i> , 2021 , 12, 555	9.8	2
18	Metabolic subtypes of nonalcoholic fatty liver disease patients exhibit distinctive cardiovascular risk profiles <i>Hepatology</i> , 2022 ,	11.2	2
17	Cystic Diseases of the Liver and Biliary Tract2009-2021		1
16	S-Adenosylmethionine 2004 , 1-6		1
15	S-Adenosylmethionine 2010 , 1-6		1
14	Targeting Hepatic Glutaminase 1 Ameliorates Non-Alcoholic Steatohepatitis by Restoring Disrupted Hepatic Very-Low Density Lipoproteins Triglyceride Assembly. SSRN Electronic Journal,	1	1
13	Increase in Alcoholic Hepatitis as an Etiology for Liver Transplantation in the United States: A 2004-2018 Analysis. <i>Transplantation Direct</i> , 2020 , 6, e612	2.3	1
12	Cystic Diseases of the Liver and Biliary Tract361-367		1
11	Depletion of mitochondrial methionine adenosyltransferase II triggers mitochondrial dysfunction in alcohol-associated liver disease <i>Nature Communications</i> , 2022 , 13, 557	17.4	Ο

10	Comparison of Surgical Resection and Systemic Treatment for Hepatocellular Carcinoma with Vascular Invasion: National Cancer Database Analysis. <i>Liver Cancer</i> , 2021 , 10, 407-418	9.1	O
9	Boosting mitochondria activity by silencing MCJ overcomes cholestasis-induced liver injury. <i>JHEP Reports</i> , 2021 , 3, 100276	10.3	O
8	Deregulated 14-3-3 and methionine adenosyltransferase and interplay promotes liver cancer tumorigenesis in mice and humans. <i>Oncogene</i> , 2021 , 40, 5866-5879	9.2	0
7	Reply to High hepatocellular carcinoma risk among US-born Hispanics. <i>Cancer</i> , 2017 , 123, 358-359	6.4	
6	Reply:. <i>Hepatology</i> , 2009 , 49, 2131-2131	11.2	
5	Role of S-Adenosyl-L-Methionine in Alcohol-Associated Liver Cancer 2006 , 160-174		
4	The Prolyl Isomerase PIN1 Impairs Methionine Adenosyltransferase 1 Mitochondrial Targeting in Alcoholic Liver Disease. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
3	S-Adenosylmethionine and Methionine Adenosyltransferase Genes 2006 , 93-111		
2	Methionine Adenosyltransferase 2A Positively Regulates Bcl-2 Expression in a Ubiquitin-Conjugating Enzyme 9-Dependent Manner. <i>FASEB Journal</i> , 2012 , 26, 145.10	0.9	