Haipeng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199857/publications.pdf

Version: 2024-02-01

44 papers 2,354 citations

304602 22 h-index 276775 41 g-index

44 all docs 44 docs citations

44 times ranked 3532 citing authors

#	Article	IF	CITATIONS
1	Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nature Communications, 2022, 13, 1757.	5.8	35
2	Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1. Developmental Cell, 2021, 56, 2692-2702.e5.	3.1	20
3	Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Circulation, 2020, 142, 49-64.	1.6	70
4	Therapeutic Effect of Targeting Branchedâ€Chain Amino Acid Catabolic Flux in Pressureâ€Overload Induced Heart Failure. Journal of the American Heart Association, 2019, 8, e011625.	1.6	46
5	A new branch connecting thermogenesis and diabetes. Nature Metabolism, 2019, 1, 845-846.	5.1	8
6	BCAA Catabolic Defect Alters Glucose Metabolism in Lean Mice. Frontiers in Physiology, 2019, 10, 1140.	1.3	37
7	Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes, 2019, 68, 1730-1746.	0.3	201
8	Survival-based bioinformatics analysis to identify hub genes and key pathways in non-small cell lung cancer. Translational Cancer Research, 2019, 8, 1188-1198.	0.4	2
9	PPM1K Regulates Hematopoiesis and Leukemogenesis through CDC20-Mediated Ubiquitination of MEIS1 and p21. Cell Reports, 2018, 23, 1461-1475.	2.9	46
10	Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metabolism, 2017, 25, 374-385.	7.2	289
11	Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway. Frontiers in Physiology, 2017, 8, 853.	1.3	29
12	Differential Regulation of Bclâ€x _L Gene Expression by Corticosterone, Progesterone, and Retinoic Acid. Journal of Biochemical and Molecular Toxicology, 2016, 30, 309-316.	1.4	2
13	Identification of HNF-4 \hat{l} \pm as a key transcription factor to promote ChREBP expression in response to glucose. Scientific Reports, 2016, 6, 23944.	1.6	21
14	Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 2016, 133, 2038-2049.	1.6	390
15	Branched chain amino acid metabolic reprogramming in heart failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2270-2275.	1.8	62
16	Keto acid metabolites of branched-chain amino acids inhibit oxidative stress-induced necrosis and attenuate myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2016, 101, 90-98.	0.9	16
17	Characterization of Sin1 Isoforms Reveals an mTOR-Dependent and Independent Function of Sin1 \hat{I}^3 . PLoS ONE, 2015, 10, e0135017.	1.1	24
18	The Elusive Philosopher's Stone in Young Blood. Circulation Research, 2015, 117, 906-908.	2.0	2

#	Article	IF	Citations
19	A H(a)rd Way to Adapt in Cardiac Hypertrophy. Circulation Research, 2015, 117, 484-486.	2.0	2
20	Ajuba Preferentially Binds LXR $\hat{1}$ ±/RXR $\hat{1}$ 3 Heterodimer to Enhance LXR Target Gene Expression in Liver Cells. Molecular Endocrinology, 2015, 29, 1608-1618.	3.7	12
21	Induction of SENP1 in myocardium contributes to abnormities of mitochondria and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 79, 115-122.	0.9	32
22	Branched Chain Amino Acids in Heart Failure. , 2015, , 81-88.		1
23	Interferon Regulatory Factors in Heart. Hypertension, 2014, 63, 663-664.	1.3	15
24	Abstract 357: Branched-Chain Amino Acid Metabolic Reprogramming in Heart Failure. Circulation Research, 2013, 113, .	2.0	0
25	Prostaglandin E2 in Remote Control of Myocardial Remodeling. Circulation, 2012, 125, 2818-2820.	1.6	3
26	Tissue-specific and Nutrient Regulation of the Branched-chain α-Keto Acid Dehydrogenase Phosphatase, Protein Phosphatase 2Cm (PP2Cm). Journal of Biological Chemistry, 2012, 287, 23397-23406.	1.6	53
27	Klf15 Orchestrates Circadian Nitrogen Homeostasis. Cell Metabolism, 2012, 15, 311-323.	7.2	119
28	Novel Ser/Thr Protein Phosphatases in Cell Death Regulation. Physiology, 2012, 27, 43-52.	1.6	25
29	Catabolism of Branched-Chain Amino Acids in Heart Failure: Insights from Genetic Models. Pediatric Cardiology, 2011, 32, 305-310.	0.6	51
30	Restriction of Big Hearts by a Small RNA. Circulation Research, 2011, 108, 274-276.	2.0	9
31	Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit?. Cardiovascular Research, 2011, 90, 220-223.	1.8	167
32	Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. Journal of Clinical Investigation, 2009, 119, 1678-1687.	3.9	182
33	Chapter 14 Functional Characterization of a Mitochondrial Ser/Thr Protein Phosphatase in Cell Death Regulation. Methods in Enzymology, 2009, 457, 255-273.	0.4	20
34	Inhibitors of GSK-3 Prevent Corticosterone from Inducing COX-1 Expression in Cardiomyocytes. Cardiovascular Toxicology, 2008, 8, 93-100.	1.1	5
35	p38 MAPK mediates COX-2 gene expression by corticosterone in cardiomyocytes. Cellular Signalling, 2008, 20, 1952-1959.	1.7	31
36	LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism. Toxicology and Applied Pharmacology, 2008, 232, 25-32.	1.3	15

#	Article	IF	CITATIONS
37	FP Prostanoid Receptor-Mediated Induction of the Expression of Early Growth Response Factor-1 by Activation of a Ras/Raf/Mitogen-Activated Protein Kinase Signaling Cascade. Molecular Pharmacology, 2008, 73, 111-118.	1.0	9
38	Corticosteroids induce COX-2 expression in cardiomyocytes: role of glucocorticoid receptor and C/EBP-Î ² . American Journal of Physiology - Cell Physiology, 2008, 295, C915-C922.	2.1	25
39	Corticosteroids Induce Cyclooxygenase 1 Expression in Cardiomyocytes: Role of Glucocorticoid Receptor and Sp3 Transcription Factor. Molecular Endocrinology, 2008, 22, 2076-2084.	3.7	15
40	Translational Control of Nrf2 Protein in Activation of Antioxidant Response by Oxidants. Molecular Pharmacology, 2007, 72, 1074-1081.	1.0	125
41	Involvement of oxidants and AP-1 in angiotensin II-activated NFAT3 transcription factor. American Journal of Physiology - Cell Physiology, 2007, 292, C1248-C1255.	2.1	24
42	Corticosteroids Inhibit Cell Death Induced by Doxorubicin in Cardiomyocytes: Induction of Antiapoptosis, Antioxidant, and Detoxification Genes. Molecular Pharmacology, 2005, 67, 1861-1873.	1.0	58
43	c-Fos Phosphorylation Induced by H2O2 Prevents Proteasomal Degradation of c-Fos in Cardiomyocytes. Journal of Biological Chemistry, 2004, 279, 33567-33574.	1.6	46
44	Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	10