Julien C Marie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/819958/publications.pdf

Version: 2024-02-01

38 papers

4,261 citations

186265
28
h-index

330143 37 g-index

42 all docs 42 docs citations

42 times ranked 6939 citing authors

#	Article	IF	CITATIONS
1	TGF- \hat{l}^21 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 2005, 201, 1061-1067.	8.5	918
2	TGF- \hat{l}^2 inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19.	3.6	453
3	Cellular Mechanisms of Fatal Early-Onset Autoimmunity in Mice with the T Cell-Specific Targeting of Transforming Growth Factor-Î ² Receptor. Immunity, 2006, 25, 441-454.	14.3	423
4	Glutamine-dependent \hat{l} ±-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Science Signaling, 2015, 8, ra97.	3.6	372
5	Inflammatory Monocytes Activate Memory CD8+ T and Innate NK Lymphocytes Independent of Cognate Antigen during Microbial Pathogen Invasion. Immunity, 2012, 37, 549-562.	14.3	236
6	Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell–induced inflammation. Nature Immunology, 2002, 3, 659-666.	14.5	159
7	Integrin $\hat{l}\pm v\hat{l}^2$ 8-Mediated TGF- \hat{l}^2 Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation. Immunity, 2015, 42, 903-915.	14.3	157
8	Cutting Edge: Crucial Role of IL-1 and IL-23 in the Innate IL-17 Response of Peripheral Lymph Node NK1.1â^' Invariant NKT Cells to Bacteria. Journal of Immunology, 2011, 186, 662-666.	0.8	137
9	Mechanism of Measles Virus–Induced Suppression of Inflammatory Immune Responses. Immunity, 2001, 14, 69-79.	14.3	128
10	Inactivation of TIF1 \hat{I}^3 Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas. PLoS Genetics, 2009, 5, e1000575.	3. 5	102
11	TGF- \hat{l}^2 prevents T follicular helper cell accumulation and B cell autoreactivity. Journal of Clinical Investigation, 2014, 124, 4375-4386.	8.2	95
12	Transforming growth factor \hat{l}^2 : a master regulator of the gut microbiota and immune cell interactions. Clinical and Translational Immunology, 2017, 6, e136.	3.8	89
13	TGF- \hat{l}^21 Limits Plaque Growth, Stabilizes Plaque Structure, and Prevents Aortic Dilation in Apolipoprotein E-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1251-1257.	2.4	86
14	Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from Fcî ³ RII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression. Journal of Virology, 2003, 77, 11332-11346.	3 . 4	81
15	iNKT cell development is orchestrated by different branches of TGF- \hat{l}^2 signaling. Journal of Experimental Medicine, 2009, 206, 1365-1378.	8.5	81
16	Type 1 Treg cells promote the generation of CD8+ tissue-resident memory T cells. Nature Immunology, 2020, 21, 766-776.	14.5	66
17	Cellular Stress in the Context of an Inflammatory Environment Supports TGF-Î ² -Independent T Helper-17 Differentiation. Cell Reports, 2017, 19, 2357-2370.	6.4	59
18	Regulatory T cells promote cancer immune-escape through integrin $\hat{l}\pm\nu\hat{l}^2$ 8-mediated TGF- \hat{l}^2 activation. Nature Communications, 2021, 12, 6228.	12.8	58

#	Article	IF	Citations
19	Autocrine Adenosine Regulates Tumor Polyfunctional CD73+CD4+ Effector T Cells Devoid of Immune Checkpoints. Cancer Research, 2018, 78, 3604-3618.	0.9	53
20	Cell Surface Delivery of the Measles Virus Nucleoprotein: a Viral Strategy To Induce Immunosuppression. Journal of Virology, 2004, 78, 11952-11961.	3.4	50
21	Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Molecular Medicine, 2017, 9, 835-851.	6.9	44
22	Immunomodulatory Properties of Morbillivirus Nucleoproteins. Viral Immunology, 2006, 19, 324-334.	1.3	43
23	Generation of mice with conditionally activated transforming growth factor beta signaling through the TβRI/ALK5 receptor. Genesis, 2008, 46, 724-731.	1.6	42
24	Productive Measles Virus Brain Infection and Apoptosis in CD46 Transgenic Mice. Journal of Virology, 2000, 74, 1373-1382.	3.4	41
25	NK1.1+ CD8+ T cells escape TGF \hat{l}^2 control and contribute to early microbial pathogen response. Nature Communications, 2014, 5, 5150.	12.8	40
26	Regulatory TÂcell differentiation is controlled by \hat{i} ±KG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Reports, 2021, 37, 109911.	6.4	39
27	Development and function of murine RORÎ 3 t+ iNKT cells are under TGF-Î 2 signaling control. Blood, 2012, 119, 3486-3494.	1.4	36
28	Interplay between Virus-Specific Effector Response and Foxp3+ Regulatory T Cells in Measles Virus Immunopathogenesis. PLoS ONE, 2009, 4, e4948.	2.5	35
29	The human <i>NUPR1/P8</i> gene is transcriptionally activated by transforming growth factor β via the SMAD signalling pathway. Biochemical Journal, 2012, 445, 285-293.	3.7	29
30	Targeting netrinâ€1/ <scp>DCC</scp> interaction in diffuse large Bâ€cell and mantle cell lymphomas. EMBO Molecular Medicine, 2016, 8, 96-104.	6.9	19
31	SMAD4 TGF-β–independent function preconditions naive CD8+ T cells to prevent severe chronic intestinal inflammation. Journal of Clinical Investigation, 2022, 132, .	8.2	18
32	The DNA methylome of inflammatory bowel disease (IBD) reflects intrinsic and extrinsic factors in intestinal mucosal cells. Epigenetics, 2020, 15, 1068-1082.	2.7	15
33	MAVS deficiency induces gut dysbiotic microbiota conferring a proallergic phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10404-10409.	7.1	14
34	ERRα Expression in Bone Metastases Leads to an Exacerbated Antitumor Immune Response. Cancer Research, 2020, 80, 2914-2926.	0.9	13
35	A rapid strategy to detect the recombined allele in LSLâ€₹βRI ^{CA} transgenic mice. Genesis, 2010, 48, 559-562.	1.6	12
36	Transforming Growth Factor-beta signaling in $\hat{l}\pm\hat{l}^2$ thymocytes promotes negative selection. Nature Communications, 2019, 10, 5690.	12.8	9

#	Article	IF	CITATIONS
37	Characterization of the developmental landscape of murine ROR \hat{I}^3 t+ iNKT cells. International Immunology, 2020, 32, 105-116.	4.0	6
38	Effects of Estrogens on Osteoimmunology: A Role in Bone Metastasis. Frontiers in Immunology, 0, 13, .	4.8	3