
Hongbing Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode. Advanced Functional Materials, 2022, 32, .	14.9	32
2	Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. Journal of Colloid and Interface Science, 2022, 613, 94-102.	9.4	34
3	Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers. Chemical Engineering Journal, 2022, 443, 136468.	12.7	17
4	Ultra-sensitive flexible strain sensors based on hybrid conductive networks for monitoring human activities. Sensors and Actuators A: Physical, 2022, 342, 113627.	4.1	4
5	High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors. Journal of Materials Chemistry C, 2021, 9, 575-583.	5.5	60
6	Mechanically Strong Double-Layered Aramid Nanofibers/MWCNTs/PANI Film Electrode for Flexible Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 020513.	2.9	18
7	Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: the role of pore sizes of graphene foam. Journal of Materials Science: Materials in Electronics, 2020, 31, 125-133.	2.2	14
8	Water-Dispersible Hydrothermal Aramid Nanofibers Reinforced Styrene-Butadiene Rubber with Enhanced Mechanical Behaviour and Solvent Resistance. Fibers and Polymers, 2020, 21, 1808-1815.	2.1	4
9	Highly flexible and mechanically strong polyaniline nanostructure @ aramid nanofiber films for free-standing supercapacitor electrodes. Nanoscale, 2020, 12, 5507-5520.	5.6	40
10	Ultrasensitive and wearable strain sensors based on natural rubber/graphene foam. Journal of Alloys and Compounds, 2019, 785, 1001-1008.	5.5	60
11	Tailoring the structure of Kevlar nanofiber and its effects on the mechanical property and thermal stability of carboxylated acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 2019, 136, 47698.	2.6	16
12	Waterâ€induced mechanically adaptive behavior of carboxylated acrylonitrileâ€butadiene rubber reinforced by bacterial cellulose whiskers. Polymer Engineering and Science, 2019, 59, 58-65.	3.1	9
13	The crystallization behaviors and rheological properties of polypropylene/graphene nanocomposites: The role of surface structure of reduced graphene oxide. Thermochimica Acta, 2018, 661, 124-136.	2.7	21
14	Water-induced modulus changes of bio-based uncured nanocomposite film based on natural rubber and bacterial cellulose nanocrystals. Industrial Crops and Products, 2018, 113, 240-248.	5.2	24
15	Impact of blend ratio on the properties of graphene oxideâ€filled carboxylated acrylonitrile–butadiene rubber/styrene–butadiene rubber blends. Polymer International, 2018, 67, 463-470.	3.1	3
16	Enhanced mechanical properties of styrene–butadiene rubber with low content of bacterial cellulose nanowhiskers. Advances in Polymer Technology, 2018, 37, 1323-1334.	1.7	12
17	Effect of oxygen functional groups of reduced graphene oxide on the mechanical and thermal properties of polypropylene nanocomposites. Polymer International, 2018, 67, 1401-1409.	3.1	6
18	Tailoring rubber-filler interfacial interaction and multifunctional rubber nanocomposites by usage of graphene oxide with different oxidation degrees. Composites Part B: Engineering, 2017, 124, 250-259.	12.0	38

HONGBING JIA

#	Article	IF	CITATIONS
19	Thermal stability and non-isothermal crystallization kinetics of metallocene poly (ethylene-butene-hexene) /high fluid polypropylene copolymer blends. Thermochimica Acta, 2017, 647, 55-61.	2.7	20
20	Enhanced compatibility and mechanical properties of carboxylated acrylonitrile butadiene rubber/styrene butadiene rubber by using graphene oxide as reinforcing filler. Composites Part B: Engineering, 2017, 111, 243-250.	12.0	50
21	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Interfaces, 2017, 9, 32054-32064.	8.0	156
22	High mechanical properties, thermal conductivity and solvent resistance in graphene oxide/styrene-butadiene rubber nanocomposites by engineering carboxylated acrylonitrile-butadiene rubber. Composites Part B: Engineering, 2017, 130, 257-266.	12.0	49
23	Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Applied Surface Science, 2017, 423, 584-591.	6.1	45
24	Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes. Journal of Materials Science, 2017, 52, 10814-10828.	3.7	28
25	lonic liquid functionalized graphene oxide for enhancement of styreneâ€butadiene rubber nanocomposites. Polymers for Advanced Technologies, 2017, 28, 293-302.	3.2	50
26	Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. Journal of Materials Science, 2016, 51, 5724-5737.	3.7	50
27	Bacterial cellulose whisker as a reinforcing filler for carboxylated acrylonitrile-butadiene rubber. Journal of Materials Science, 2014, 49, 6093-6101.	3.7	35
28	Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. Journal of Materials Science, 2013, 48, 1571-1577.	3.7	107
29	Oxygen evolution: the mechanism of formation of porous anodic alumina. Monatshefte Für Chemie, 2009, 140, 595-600.	1.8	12
30	Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatshefte Für Chemie, 2008, 139, 999-1003.	1.8	93