Hongbing Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199405/publications.pdf

Version: 2024-02-01

30	1,107	18	30
papers	citations	h-index	g-index
30	30	30	1247
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Enterfaces, 2017, 9, 32054-32064.	8.0	156
2	Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. Journal of Materials Science, 2013, 48, 1571-1577.	3.7	107
3	Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatshefte Fýr Chemie, 2008, 139, 999-1003.	1.8	93
4	Ultrasensitive and wearable strain sensors based on natural rubber/graphene foam. Journal of Alloys and Compounds, 2019, 785, 1001-1008.	5 . 5	60
5	High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors. Journal of Materials Chemistry C, 2021, 9, 575-583.	5 . 5	60
6	Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. Journal of Materials Science, 2016, 51, 5724-5737.	3.7	50
7	Enhanced compatibility and mechanical properties of carboxylated acrylonitrile butadiene rubber/styrene butadiene rubber by using graphene oxide as reinforcing filler. Composites Part B: Engineering, 2017, 111, 243-250.	12.0	50
8	lonic liquid functionalized graphene oxide for enhancement of styreneâ€butadiene rubber nanocomposites. Polymers for Advanced Technologies, 2017, 28, 293-302.	3. 2	50
9	High mechanical properties, thermal conductivity and solvent resistance in graphene oxide/styrene-butadiene rubber nanocomposites by engineering carboxylated acrylonitrile-butadiene rubber. Composites Part B: Engineering, 2017, 130, 257-266.	12.0	49
10	Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Applied Surface Science, 2017, 423, 584-591.	6.1	45
11	Highly flexible and mechanically strong polyaniline nanostructure @ aramid nanofiber films for free-standing supercapacitor electrodes. Nanoscale, 2020, 12, 5507-5520.	5.6	40
12	Tailoring rubber-filler interfacial interaction and multifunctional rubber nanocomposites by usage of graphene oxide with different oxidation degrees. Composites Part B: Engineering, 2017, 124, 250-259.	12.0	38
13	Bacterial cellulose whisker as a reinforcing filler for carboxylated acrylonitrile-butadiene rubber. Journal of Materials Science, 2014, 49, 6093-6101.	3.7	35
14	Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. Journal of Colloid and Interface Science, 2022, 613, 94-102.	9.4	34
15	Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode. Advanced Functional Materials, 2022, 32, .	14.9	32
16	Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes. Journal of Materials Science, 2017, 52, 10814-10828.	3.7	28
17	Water-induced modulus changes of bio-based uncured nanocomposite film based on natural rubber and bacterial cellulose nanocrystals. Industrial Crops and Products, 2018, 113, 240-248.	5.2	24
18	The crystallization behaviors and rheological properties of polypropylene/graphene nanocomposites: The role of surface structure of reduced graphene oxide. Thermochimica Acta, 2018, 661, 124-136.	2.7	21

#	Article	IF	CITATIONS
19	Thermal stability and non-isothermal crystallization kinetics of metallocene poly (ethylene-butene-hexene) /high fluid polypropylene copolymer blends. Thermochimica Acta, 2017, 647, 55-61.	2.7	20
20	Mechanically Strong Double-Layered Aramid Nanofibers/MWCNTs/PANI Film Electrode for Flexible Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 020513.	2.9	18
21	Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers. Chemical Engineering Journal, 2022, 443, 136468.	12.7	17
22	Tailoring the structure of Kevlar nanofiber and its effects on the mechanical property and thermal stability of carboxylated acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 2019, 136, 47698.	2.6	16
23	Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: the role of pore sizes of graphene foam. Journal of Materials Science: Materials in Electronics, 2020, 31, 125-133.	2.2	14
24	Oxygen evolution: the mechanism of formation of porous anodic alumina. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2009, 140, 595-600.	1.8	12
25	Enhanced mechanical properties of styrene–butadiene rubber with low content of bacterial cellulose nanowhiskers. Advances in Polymer Technology, 2018, 37, 1323-1334.	1.7	12
26	Waterâ€induced mechanically adaptive behavior of carboxylated acrylonitrileâ€butadiene rubber reinforced by bacterial cellulose whiskers. Polymer Engineering and Science, 2019, 59, 58-65.	3.1	9
27	Effect of oxygen functional groups of reduced graphene oxide on the mechanical and thermal properties of polypropylene nanocomposites. Polymer International, 2018, 67, 1401-1409.	3.1	6
28	Water-Dispersible Hydrothermal Aramid Nanofibers Reinforced Styrene-Butadiene Rubber with Enhanced Mechanical Behaviour and Solvent Resistance. Fibers and Polymers, 2020, 21, 1808-1815.	2.1	4
29	Ultra-sensitive flexible strain sensors based on hybrid conductive networks for monitoring human activities. Sensors and Actuators A: Physical, 2022, 342, 113627.	4.1	4
30	Impact of blend ratio on the properties of graphene oxideâ€filled carboxylated acrylonitrile–butadiene rubber/styrene–butadiene rubber blends. Polymer International, 2018, 67, 463-470.	3.1	3