List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199401/publications.pdf Version: 2024-02-01

	41627	66518
8,191	51	82
citations	h-index	g-index
314	314	8928
docs citations	times ranked	citing authors
	8,191 citations 314 docs citations	 8,191 citations 314 docs citations 314 times ranked

#	Article	IF	CITATIONS
1	Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nature Communications, 2022, 13, 180.	5.8	6
2	Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates. ACS Central Science, 2022, 8, 473-482.	5.3	13
3	Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Reports, 2022, 39, 110630.	2.9	5
4	Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles. Journal of the American Chemical Society, 2022, 144, 12138-12146.	6.6	16
5	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
6	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
7	Chemsearch: collaborative compound libraries with structure-aware browsing. Bioinformatics Advances, 2021, 1, .	0.9	1
8	Allosteric Inhibition of the Epidermal Growth Factor Receptor. Biochemistry, 2021, 60, 500-512.	1.2	1
9	Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons. ACS Chemical Biology, 2021, 16, 766-774.	1.6	39
10	Cytosolic Delivery of Argininosuccinate Synthetase Using a Cell-Permeant Miniature Protein. ACS Central Science, 2021, 7, 641-649.	5.3	7
11	Extremely Bright, Near-IR Emitting Spontaneously Blinking Fluorophores Enable Ratiometric Multicolor Nanoscopy in Live Cells. ACS Central Science, 2021, 7, 1419-1426.	5.3	40
12	Genetic Code Expansion in the Engineered Organism Vmax X2: High Yield and Exceptional Fidelity. ACS Central Science, 2021, 7, 1500-1507.	5.3	9
13	Initiating protein synthesis with noncanonical monomers in vitro and in vivo. Methods in Enzymology, 2021, 656, 495-519.	0.4	4
14	Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Current Opinion in Chemical Biology, 2021, 65, 154-162.	2.8	21
15	Introducing the 60th Anniversary of Biochemistry Special Issue. Biochemistry, 2021, 60, 3409-3409.	1.2	0
16	Initiation of Protein Synthesis with Non anonical Amino Acids Inâ€Vivo. Angewandte Chemie, 2020, 132, 3146-3150.	1.6	6
17	Initiation of Protein Synthesis with Non anonical Amino Acids Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 3122-3126.	7.2	43
18	Discrete Coiled Coil Rotamers Form within the EGFRvIII Juxtamembrane Domain. Biochemistry, 2020, 59, 3965-3972.	1.2	2

#	Article	IF	CITATIONS
19	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
20	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	Ο
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	Ο
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	Ο
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
38	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	Ο
42	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
43	Quantification of protein delivery in live cells using fluorescence correlation spectroscopy. Methods in Enzymology, 2020, 641, 477-505.	0.4	11
44	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
45	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
46	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
47	RNA sectors and allosteric function within the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19879-19887.	3.3	16
48	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
49	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
50	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
51	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
52	Confronting Racism in Chemistry Journals. Energy & Fuels, 2020, 34, 7771-7773.	2.5	0
53	Two-color nanoscopy of organelles for extended times with HIDE probes. Nature Communications, 2020, 11, 4271.	5.8	26
54	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0

#	Article	IF	CITATIONS
55	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	Ο
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
66	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
67	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
68	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
69	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
70	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
71	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
72	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	Ο
74	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
75	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
76	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
77	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
78	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
79	Welcome New Executive Editor, Bryan Roth. Biochemistry, 2020, 59, 2121-2121.	1.2	0
80	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
81	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
82	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
83	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
84	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
85	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
86	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
87	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
88	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
89	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
90	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
92	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
93	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	Ο
94	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
95	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	Ο
96	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	Ο
98	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
99	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	Ο
100	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
101	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
102	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
103	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	Ο
104	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	Ο
106	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
107	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
108	Endosome motility defects revealed at super-resolution in live cells using HIDE probes. Nature Chemical Biology, 2020, 16, 408-414.	3.9	20

#	Article	IF	CITATIONS
109	Introducing "Future of Biochemistry 2020: The Asia-Pacific Issue― Biochemistry, 2020, 59, 1-7.	1.2	Ο
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	Ο
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
131	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
132	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
133	Structure of the bacterial ribosome at 2 Ã resolution. ELife, 2020, 9, .	2.8	151
134	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
135	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
136	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
137	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	Ο
138	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
139	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	Ο
140	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
141	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	Ο
142	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
143	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
144	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1

9

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	Ο
146	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
147	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
148	GEM-NET: Lessons in Multi-Institution Teamwork Using Collaboration Software. ACS Central Science, 2019, 5, 1159-1169.	5.3	2
149	Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes <i>in Vitro</i> . ACS Central Science, 2019, 5, 1289-1294.	5.3	54
150	Defects in the Assembly of Ribosomes Selected for β-Amino Acid Incorporation. Biochemistry, 2019, 58, 4494-4504.	1.2	19
151	Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags. Cell Chemical Biology, 2019, 26, 584-592.e6.	2.5	100
152	Welcome New Associate Editor, Squire Booker. Biochemistry, 2019, 58, 5099-5099.	1.2	0
153	HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 512-521.	3.3	41
154	Introducing "Future of Biochemistry: The International Issue― Biochemistry, 2019, 58, 1-6.	1.2	1
155	Introducing the "Future of Biochemistry―Special Issue. Biochemistry, 2018, 57, 1-8.	1.2	0
156	Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nature Chemistry, 2018, 10, 644-652.	6.6	91
157	Foldamers wave to the ribosome. Nature Chemistry, 2018, 10, 377-379.	6.6	4
158	Ronald Breslow (1931–2017). Angewandte Chemie - International Edition, 2018, 57, 37-37.	7.2	1
159	Unique arginine array improves cytosolic localization of hydrocarbon-stapled peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 1197-1202.	1.4	18
160	Fluorescence Correlation Spectroscopy Reveals Efficient Cytosolic Delivery of Protein Cargo by Cell-Permeant Miniature Proteins. ACS Central Science, 2018, 4, 1379-1393.	5.3	42
161	Synthesis and Biological Evaluation of an Indazole-Based Selective Protein Arginine Deiminase 4 (PAD4) Inhibitor. ACS Medicinal Chemistry Letters, 2018, 9, 1013-1018.	1.3	15
162	Mechanism of Allosteric Coupling into and through the Plasma Membrane by EGFR. Cell Chemical Biology, 2018, 25, 857-870.e7.	2.5	32

#	Article	IF	CITATIONS
163	Special Issue on Discovering New Tools. Biochemistry, 2018, 57, 4605-4606.	1.2	Ο
164	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	2.9	113
165	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	5.3	78
166	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	1.7	8
167	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	1.2	8
168	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	2.5	20
169	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	1.3	35
170	A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Molecular Biology of the Cell, 2017, 28, 1676-1687.	0.9	55
171	Yes, Biochemistry Now Publishes Communications and Something New—From the Bench. Biochemistry, 2017, 56, 2863-2864.	1.2	2
172	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	1.8	4
173	Introducing the "Seeing into Cells―Special Issue. Biochemistry, 2017, 56, 5161-5162.	1.2	1
174	STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells. Methods in Molecular Biology, 2017, 1663, 65-78.	0.4	15
175	Longâ€Term Liveâ€Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe Dilâ€SiR. Angewandte Chemie - International Edition, 2017, 56, 10408-10412.	7.2	44
176	Longâ€Term Liveâ€Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe Dilâ€SiR. Angewandte Chemie, 2017, 129, 10544-10548.	1.6	3
177	HIDE Probes: A New Toolkit for Visualizing Organelle Dynamics, Longer and at Super-Resolution. Biochemistry, 2017, 56, 5194-5201.	1.2	28
178	The New Biochemistry Editorial Team. Biochemistry, 2017, 56, 4289-4290.	1.2	1
179	Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nature Biotechnology, 2017, 35, 773-780.	9.4	157
180	Two-colour live-cell nanoscale imaging of intracellular targets. Nature Communications, 2016, 7, 10778.	5.8	197

#	Article	IF	CITATIONS
181	<i>In Vivo</i> Biosynthesis of a β-Amino Acid-Containing Protein. Journal of the American Chemical Society, 2016, 138, 5194-5197.	6.6	101
182	β-Peptide bundles: Design. Build. Analyze. Biosynthesize Chemical Communications, 2016, 52, 7420-7432.	2.2	47
183	Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH. Journal of the American Chemical Society, 2016, 138, 7143-7150.	6.6	21
184	Building on 50 Years of Excellence Where Chemistry Meets Life Science. Biochemistry, 2016, 55, 4997-4997.	1.2	4
185	Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. Journal of the American Chemical Society, 2016, 138, 3175-3182.	6.6	73
186	Fluorescence Correlation Spectroscopy Reveals Highly Efficient Cytosolic Delivery of Certain Penta-Arg Proteins and Stapled Peptides. Journal of the American Chemical Society, 2015, 137, 2536-2541.	6.6	99
187	Structural Differences between Wild-Type and Double Mutant EGFR Modulated by Third-Generation Kinase Inhibitors. Journal of the American Chemical Society, 2015, 137, 6456-6459.	6.6	20
188	Discovery and Characterization of a Peptide That Enhances Endosomal Escape of Delivered Proteins in Vitro and in Vivo. Journal of the American Chemical Society, 2015, 137, 14084-14093.	6.6	109
189	Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region. Chemistry and Biology, 2015, 22, 776-784.	6.2	42
190	Improved Carbohydrate Recognition in Water with an Electrostatically Enhanced β-Peptide Bundle. Organic Letters, 2015, 17, 4718-4721.	2.4	21
191	Hochaufgelöste Visualisierung des Golgiâ€Apparats in lebenden Zellen mit einem bioorthogonalen Ceramid. Angewandte Chemie, 2014, 126, 10407-10412.	1.6	24
192	Positive Allostery in Metal Ion Binding by a Cooperatively Folded Î ² -Peptide Bundle. Journal of the American Chemical Society, 2014, 136, 14726-14729.	6.6	34
193	Inhibiting Epidermal Growth Factor Receptor at a Distance. Journal of the American Chemical Society, 2014, 136, 11232-11235.	6.6	27
194	Interactions of AsCy3 with Cysteine-Rich Peptides. Organic Letters, 2014, 16, 3824-3827.	2.4	13
195	Superâ€Resolution Imaging of the Golgi in Live Cells with a Bioorthogonal Ceramide Probe. Angewandte Chemie - International Edition, 2014, 53, 10242-10246.	7.2	138
196	Design and High-Resolution Structure of a β ³ -Peptide Bundle Catalyst. Journal of the American Chemical Society, 2014, 136, 6810-6813.	6.6	65
197	Influence of Macrocyclization on Allosteric, Juxtamembrane-Derived, Stapled Peptide Inhibitors of the Epidermal Growth Factor Receptor (EGFR). Organic Letters, 2014, 16, 4916-4919.	2.4	22
198	Chemistry and the BRAIN Initiative. Journal of the American Chemical Society, 2014, 136, 1-2.	6.6	364

#	Article	IF	CITATIONS
199	Effective Molarity <i>Redux</i> : Proximity as a Guiding Force in Chemistry and Biology. Israel Journal of Chemistry, 2013, 53, 567-576.	1.0	16
200	Remodeling a β-peptide bundle. Chemical Science, 2013, 4, 319-324.	3.7	18
201	A β-Peptide Agonist of the GLP-1 Receptor, a Class B GPCR. Organic Letters, 2013, 15, 5318-5321.	2.4	39
202	Supramolecular Chemistry for Biology, Materials and Medicine. Israel Journal of Chemistry, 2013, 53, 495-496.	1.0	0
203	Combined Lewis acid and BrÃ,nsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydrate Research, 2013, 382, 36-42.	1.1	22
204	Improved Assays for Determining the Cytosolic Access of Peptides, Proteins, and Their Mimetics. Biochemistry, 2013, 52, 9036-9046.	1.2	40
205	A β-Boronopeptide Bundle of Known Structure As a Vehicle for Polyol Recognition. Organic Letters, 2013, 15, 5048-5051.	2.4	26
206	Arginine Topology Controls Escape of Minimally Cationic Proteins from Early Endosomes to the Cytoplasm. Chemistry and Biology, 2012, 19, 819-830.	6.2	146
207	Rewiring Kinase Specificity with a Synthetic Adaptor Protein. Journal of the American Chemical Society, 2012, 134, 3976-3978.	6.6	27
208	Bipartite Tetracysteine Display Reveals Allosteric Control of Ligand-Specific EGFR Activation. ACS Chemical Biology, 2012, 7, 1367-1376.	1.6	51
209	Relationship between side-chain branching and stoichiometry in β3-peptide bundles. Tetrahedron, 2012, 68, 4342-4345.	1.0	7
210	Surveying Protein Structure and Function Using Bis-Arsenical Small Molecules. Accounts of Chemical Research, 2011, 44, 654-665.	7.6	67
211	Visualizing protein partnerships in living cells and organisms. Current Opinion in Chemical Biology, 2011, 15, 781-788.	2.8	33
212	Molecular imaging: sine labore nihil. Current Opinion in Chemical Biology, 2011, 15, 749-751.	2.8	4
213	Enhancing β ³ â€₽eptide Bundle Stability by Design. ChemBioChem, 2011, 12, 1035-1038.	1.3	22
214	In and out: Trafficking of peptideâ€based materials. FASEB Journal, 2011, 25, 206.3.	0.2	0
215	Visualizing Tyrosine Kinase Activity with Bipartite Tetracysteine Display. ChemBioChem, 2010, 11, 2089-2091.	1.3	18
216	Direct Visualization of Protein Association in Living Cells with Complexâ€Edited Electron Microscopy. Angewandte Chemie - International Edition, 2010, 49, 7952-7954.	7.2	8

#	Article	IF	CITATIONS
217	β-Peptide Bundles with Fluorous Cores. Journal of the American Chemical Society, 2010, 132, 3658-3659.	6.6	48
218	Bridged β ³ -Peptide Inhibitors of p53-hDM2 Complexation: Correlation between Affinity and Cell Permeability. Journal of the American Chemical Society, 2010, 132, 2904-2906.	6.6	121
219	Cellâ€Permeable βâ€Peptide Inhibitors of p53/hDM2 Complexation. ChemBioChem, 2009, 10, 990-993.	1.3	46
220	Bipartite Tetracysteine Display Requires Site Flexibility for ReAsH Coordination. ChemBioChem, 2009, 10, 1644-1647.	1.3	28
221	Identification of a β3-peptide HIV fusion inhibitor with improved potency in live cells. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3736-3738.	1.0	38
222	β-Peptides with improved affinity for hDM2 and hDMX. Bioorganic and Medicinal Chemistry, 2009, 17, 2038-2046.	1.4	66
223	In Silico Improvement of β ³ -Peptide Inhibitors of p53•hDM2 and p53•hDMX. Journal of the American Chemical Society, 2009, 131, 6356-6357.	6.6	68
224	Selective Recognition of Protein Tetraserine Motifs with a Cell-Permeable, Pro-fluorescent Bis-boronic Acid. Journal of the American Chemical Society, 2009, 131, 438-439.	6.6	165
225	Tetrameric β ³ â€Peptide Bundles. ChemBioChem, 2008, 9, 1576-1578.	1.3	25
226	Minimally Cationic Cell-Permeable Miniature Proteins via α-Helical Arginine Display. Journal of the American Chemical Society, 2008, 130, 2948-2949.	6.6	102
227	Toward β-Amino Acid Proteins:  Design, Synthesis, and Characterization of a Fifteen Kilodalton β-Peptide Tetramer. Journal of the American Chemical Society, 2008, 130, 821-823.	6.6	84
228	High-Resolution Structure of a β-Peptide Bundle. Journal of the American Chemical Society, 2007, 129, 1532-1533.	6.6	195
229	Biophysical and Structural Characterization of a Robust Octameric Î ² -Peptide Bundle. Journal of the American Chemical Society, 2007, 129, 14746-14751.	6.6	63
230	Engineering a Monomeric Miniature Protein. Journal of the American Chemical Society, 2007, 129, 11024-11025.	6.6	22
231	Biophysical Characterization of a β-Peptide Bundle: Comparison to Natural Proteins. Journal of the American Chemical Society, 2007, 129, 5344-5345.	6.6	54
232	Intrinsically Cell-Permeable Miniature Proteins Based on a Minimal Cationic PPII Motif. Journal of the American Chemical Society, 2007, 129, 14578-14579.	6.6	108
233	Miniature Protein Ligands for EVH1 Domains:  Interplay between Affinity, Specificity, and Cell Motility. Biochemistry, 2007, 46, 13541-13553.	1.2	12
234	Sophistication of foldamer form and function in vitro and in vivo. Current Opinion in Chemical Biology, 2007, 11, 685-692.	2.8	141

#	Article	IF	CITATIONS
235	Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nature Chemical Biology, 2007, 3, 779-784.	3.9	127
236	Toward β-Amino Acid Proteins: A Cooperatively Folded β-Peptide Quaternary Structure. Journal of the American Chemical Society, 2006, 128, 11338-11339.	6.6	89
237	Relationship between Salt-Bridge Identity and 14-Helix Stability of β3-Peptides in Aqueous Buffer. Organic Letters, 2006, 8, 807-810.	2.4	26
238	Encodable Activators of Src Family Kinases. Journal of the American Chemical Society, 2006, 128, 16506-16507.	6.6	19
239	Miniature Protein Inhibitors of the p53-hDM2 Interaction. ChemBioChem, 2006, 7, 29-31.	1.3	81
240	β-Peptides as inhibitors of protein–protein interactions. Bioorganic and Medicinal Chemistry, 2005, 13, 11-16.	1.4	168
241	?-Peptides as Inhibitors of Protein?Protein Interactions. ChemInform, 2005, 36, no.	0.1	Ο
242	Paralog-Selective Ligands for Bcl-2 Proteins. Journal of the American Chemical Society, 2005, 127, 1596-1597.	6.6	64
243	Relationship between Folding and Function in a Sequence-Specific Miniature DNA-Binding Proteinâ€. Biochemistry, 2005, 44, 7469-7478.	1.2	13
244	Binding Mode and Transcriptional Activation Potential of High Affinity Ligands for the CBP KIX Domain. Journal of the American Chemical Society, 2005, 127, 4649-4658.	6.6	35
245	Solution Structure of a \hat{l}^2 -Peptide Ligand for hDM2. Journal of the American Chemical Society, 2005, 127, 4118-4119.	6.6	75
246	Relationship between Side Chain Structure and 14-Helix Stability of β3-Peptides in Water. Journal of the American Chemical Society, 2005, 127, 167-178.	6.6	94
247	Inhibiting HIV Fusion with a β-Peptide Foldamer. Journal of the American Chemical Society, 2005, 127, 13126-13127.	6.6	169
248	Increasing the Kinase Specificity of K252a by Protein Surface Recognition. Organic Letters, 2005, 7, 1695-1698.	2.4	54
249	A Rapid Library Screen for Tailoring \hat{l}^2 -Peptide Structure and Function. Journal of the American Chemical Society, 2005, 127, 14584-14585.	6.6	70
250	Helical β-Peptide Inhibitors of the p53-hDM2 Interaction. Journal of the American Chemical Society, 2004, 126, 9468-9469.	6.6	298
251	High Affinity, Paralog-Specific Recognition of the Mena EVH1 Domain by a Miniature Protein. Journal of the American Chemical Society, 2004, 126, 4-5.	6.6	82
252	Molecular Recognition of Protein Surfaces:Â High Affinity Ligands for the CBP KIX Domain. Journal of the American Chemical Society, 2003, 125, 14336-14347.	6.6	88

#	Article	IF	CITATIONS
253	Miniature Homeodomains:Â High Specificity without an N-Terminal Arm. Journal of the American Chemical Society, 2003, 125, 3416-3417.	6.6	64
254	Helix Macrodipole Control of β3-Peptide 14-Helix Stability in Water. Journal of the American Chemical Society, 2003, 125, 4022-4023.	6.6	110
255	A view to a kill: ligands for Bcl-2 family proteins. Current Opinion in Chemical Biology, 2002, 6, 479-485.	2.8	42
256	Kinetic Preference for Oriented DNA Binding by the Yeast TATA-Binding Protein TBP. Biochemistry, 2001, 40, 6257-6266.	1.2	14
257	Concerted Evolution of Structure and Function in a Miniature Protein. Journal of the American Chemical Society, 2001, 123, 2929-2930.	6.6	98
258	Hepatitis B Virus Protein pX Enhances the Monomer Assembly Pathway of bZIP·DNA Complexesâ€. Biochemistry, 2001, 40, 2835-2843.	1.2	11
259	Hepatitis B Virus X Protein Activates Transcription by Bypassing CREB Phosphorylation, Not by Stabilizing bZIPâ^'DNA Complexesâ€. Biochemistry, 2001, 40, 693-703.	1.2	10
260	Kinetic Studies of Fos·Jun·DNA Complex Formation:  DNA Binding Prior to Dimerization. Biochemistry, 2001, 40, 130-142.	1.2	109
261	Methodology for optimizing functional miniature proteins based on avian pancreatic polypeptide using phage display. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1501-1505.	1.0	34
262	Effects of nucleic acids and polyanions on dimer formation and DNA binding by bZIP and bHLHZip transcription factors. Bioorganic and Medicinal Chemistry, 2001, 9, 2435-2443.	1.4	9
263	Design and Evolution of a Miniature Bcl-2 Binding Protein. Angewandte Chemie - International Edition, 2001, 40, 3806-3809. Design and Evolution of a Miniature Bcl-2 Binding Protein We thank the HHMI Biopolymer/Keck	7.2	95
264	Foundation Biotechnology Resource Laboratory (Yale University School of Medicine, New Haven, CT) for oligonucleotide and peptide synthesis and amino acid analysis and Professor Jennifer Doudna (Yale University) for use of a Perseptive Voyager-DE (MALDI-TOF) mass spectrometer. We are grateful also to Dr. Junving Yuan and Dr. Alexi Degrerey (Harvard Medical School) for a generous gift of	7.2	26
265	Bcl-X(L)-His(6) and Stacey E. R. Angewandte Chemie - International Edition, 2001, 40, 3806-3809. Virtually unidirectional binding of TBP to the AdMLP TATA box within the quaternary complex with TFIIA and TFIIB. Chemistry and Biology, 2000, 7, 601-610.	6.2	16
266	Highly Specific DNA Recognition by a Designed Miniature Protein. Journal of the American Chemical Society, 1999, 121, 6938-6939.	6.6	130
267	Interaction, assembly and processing at the chemistry—biology interface. Current Opinion in Chemical Biology, 1998, 2, 9-10.	2.8	9
268	Preinitiation complex assembly: potentially a bumpy path. Current Opinion in Chemical Biology, 1998, 2, 11-17.	2.8	5
269	Sequence Determinants of the Intrinsic Bend in the Cyclic AMP Response Elementâ€. Biochemistry, 1998, 37, 7113-7118.	1.2	10
270	Electrostatic Mechanism for DNA Bending by bZIP Proteinsâ€. Biochemistry, 1997, 36, 10033-10038.	1.2	41

#	Article	IF	CITATIONS
271	Mechanism of DNA Binding Enhancement by Hepatitis B Virus Protein pXâ€. Biochemistry, 1997, 36, 15349-15355.	1.2	15
272	Kinetics and Mechanism of RNA Binding by Triplex Tethered Oligonucleotide Probes. Journal of the American Chemical Society, 1997, 119, 11591-11597.	6.6	10
273	Certain bZIP peptides bind DMA sequentially as monomers and dimerize on the DMA. Nature Structural Biology, 1997, 4, 115-117.	9.7	59
274	Evidence for induced DNA bending by the yeast zinc cluster protein PUT3. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2049-2054.	1.0	2
275	Inhibition of rev·RRE complexation by triplex tethered oligonucleotide probes. Bioorganic and Medicinal Chemistry, 1997, 5, 1123-1129.	1.4	7
276	Triplex Tethered Oligonucleotide Probes. Journal of the American Chemical Society, 1996, 118, 10896-10897.	6.6	11
277	Nonspecific DNA bending and the specificity of protein-DNA interactions. Science, 1995, 269, 989-990.	6.0	11
278	Studies on the formation of DNA·protein interfaces: DNA specificity and straightening by CREB. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1621-1626.	1.0	4
279	Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax. Nature, 1995, 376, 606-608.	13.7	180
280	Conformation of Tax-response elements in the human T-cell leukemia virus type I promoter. Chemistry and Biology, 1995, 2, 819-826.	6.2	11
281	DNA Bending and Binding by Metallo-Zipper Models of bZIP Proteins. Journal of the American Chemical Society, 1995, 117, 8899-8907.	6.6	39
282	Convenient Syntheses of Bifunctional Metal Chelates. Journal of Organic Chemistry, 1995, 60, 3924-3927.	1.7	10
283	A uniquely modified RNA: Introduction of a single RNA cleavage agent into the M1 ribozyme. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2133-2138.	1.0	6
284	Distribution of labor among bZIP segments in the control of DNA affinity and specificity. Chemistry and Biology, 1994, 1, 143-151.	6.2	41
285	Selection of structure-specific inhibitors of the HIV Rev-Rev response element complex. Journal of the American Chemical Society, 1994, 116, 437-442.	6.6	28
286	Kinetic and thermodynamic analysis of RNA binding by tethered oligonucleotide probes: alternative structures and conformational changes. Journal of the American Chemical Society, 1993, 115, 5005-5014.	6.6	22
287	Binding of alkali-metal cations by self-assembling ionophore complexes of nickel(II). Inorganic Chemistry, 1992, 31, 1308-1310.	1.9	16
288	A new strategy for directed protein cleavage. Tetrahedron Letters, 1992, 33, 895-898.	0.7	78

#	Article	IF	CITATIONS
289	Tethered oligonucleotide probes. A strategy for the recognition of structured RNA. Journal of the American Chemical Society, 1991, 113, 5109-5111.	6.6	35
290	Polyether tethered oligonucleotide probes. Journal of the American Chemical Society, 1991, 113, 6324-6326.	6.6	38
291	A general scheme for incorporating nonnatural functionality into peptides. Tetrahedron Letters, 1991, 32, 3325-3328.	0.7	6
292	Synthesis of N-α-boc-N-ε-tribenzyl EDTA-L-lysine. An amino acid analogue suitable for solid phase peptide synthesis. Tetrahedron, 1991, 47, 2535-2542.	1.0	9
293	Site-specific cleavage of the protein calmodulin using a trifluoperazine-based affinity reagent. Journal of the American Chemical Society, 1990, 112, 3247-3249.	6.6	127
294	Self-assembling ionophores. Journal of the American Chemical Society, 1989, 111, 5976-5977.	6.6	62
295	On the Mechanism of Peptide Cleavage by Carboxypeptidase A and Related Enzymes. Chemistry Letters, 1987, 16, 1-4.	0.7	13
296	Hydrolysis of an amide in a carboxypeptidase model using cobalt(III) and bifunctional catalysts. Journal of the American Chemical Society, 1987, 109, 1814-1826.	6.6	93
297	Substituent effect on the electrochemical oxidation of arylmethyl anions. 3. Effect of methyl substitution on diarylmethyl anions. Journal of Organic Chemistry, 1983, 48, 3458-3464.	1.7	17