Alanna Schepartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199401/publications.pdf

Version: 2024-02-01

297 papers 8,191 citations

51 h-index 82 g-index

314 all docs

314 docs citations

314 times ranked

7974 citing authors

#	Article	IF	CITATIONS
1	Chemistry and the BRAIN Initiative. Journal of the American Chemical Society, 2014, 136, 1-2.	13.7	364
2	Helical \hat{I}^2 -Peptide Inhibitors of the p53-hDM2 Interaction. Journal of the American Chemical Society, 2004, 126, 9468-9469.	13.7	298
3	Two-colour live-cell nanoscale imaging of intracellular targets. Nature Communications, 2016, 7, 10778.	12.8	197
4	High-Resolution Structure of a \hat{l}^2 -Peptide Bundle. Journal of the American Chemical Society, 2007, 129, 1532-1533.	13.7	195
5	Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax. Nature, 1995, 376, 606-608.	27.8	180
6	Inhibiting HIV Fusion with a \hat{I}^2 -Peptide Foldamer. Journal of the American Chemical Society, 2005, 127, 13126-13127.	13.7	169
7	î²-Peptides as inhibitors of protein–protein interactions. Bioorganic and Medicinal Chemistry, 2005, 13, 11-16.	3.0	168
8	Selective Recognition of Protein Tetraserine Motifs with a Cell-Permeable, Pro-fluorescent Bis-boronic Acid. Journal of the American Chemical Society, 2009, 131, 438-439.	13.7	165
9	Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nature Biotechnology, 2017, 35, 773-780.	17.5	157
10	Structure of the bacterial ribosome at 2 \tilde{A} resolution. ELife, 2020, 9, .	6.0	151
11	Arginine Topology Controls Escape of Minimally Cationic Proteins from Early Endosomes to the Cytoplasm. Chemistry and Biology, 2012, 19, 819-830.	6.0	146
12	Sophistication of foldamer form and function in vitro and in vivo. Current Opinion in Chemical Biology, 2007, 11, 685-692.	6.1	141
13	Superâ€Resolution Imaging of the Golgi in Live Cells with a Bioorthogonal Ceramide Probe. Angewandte Chemie - International Edition, 2014, 53, 10242-10246.	13.8	138
14	Highly Specific DNA Recognition by a Designed Miniature Protein. Journal of the American Chemical Society, 1999, 121, 6938-6939.	13.7	130
15	Site-specific cleavage of the protein calmodulin using a trifluoperazine-based affinity reagent. Journal of the American Chemical Society, 1990, 112, 3247-3249.	13.7	127
16	Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nature Chemical Biology, 2007, 3, 779-784.	8.0	127
17	Bridged \hat{l}^2 (sup>3-Peptide Inhibitors of p53-hDM2 Complexation: Correlation between Affinity and Cell Permeability. Journal of the American Chemical Society, 2010, 132, 2904-2906.	13.7	121
18	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	6.4	113

#	Article	IF	CITATIONS
19	Helix Macrodipole Control of \hat{I}^2 3-Peptide 14-Helix Stability in Water. Journal of the American Chemical Society, 2003, 125, 4022-4023.	13.7	110
20	Kinetic Studies of Fos·Jun·DNA Complex Formation:  DNA Binding Prior to Dimerization. Biochemistry, 2001, 40, 130-142.	2.5	109
21	Discovery and Characterization of a Peptide That Enhances Endosomal Escape of Delivered Proteins in Vitro and in Vivo. Journal of the American Chemical Society, 2015, 137, 14084-14093.	13.7	109
22	Intrinsically Cell-Permeable Miniature Proteins Based on a Minimal Cationic PPII Motif. Journal of the American Chemical Society, 2007, 129, 14578-14579.	13.7	108
23	Minimally Cationic Cell-Permeable Miniature Proteins via \hat{l}_{\pm} -Helical Arginine Display. Journal of the American Chemical Society, 2008, 130, 2948-2949.	13.7	102
24	$\mbox{In Vivo}$ Biosynthesis of a \hat{l}^2 -Amino Acid-Containing Protein. Journal of the American Chemical Society, 2016, 138, 5194-5197.	13.7	101
25	Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags. Cell Chemical Biology, 2019, 26, 584-592.e6.	5.2	100
26	Fluorescence Correlation Spectroscopy Reveals Highly Efficient Cytosolic Delivery of Certain Penta-Arg Proteins and Stapled Peptides. Journal of the American Chemical Society, 2015, 137, 2536-2541.	13.7	99
27	Concerted Evolution of Structure and Function in a Miniature Protein. Journal of the American Chemical Society, 2001, 123, 2929-2930.	13.7	98
28	Design and Evolution of a Miniature Bcl-2 Binding Protein. Angewandte Chemie - International Edition, 2001, 40, 3806-3809.	13.8	95
29	Relationship between Side Chain Structure and 14-Helix Stability of \hat{I}^2 3-Peptides in Water. Journal of the American Chemical Society, 2005, 127, 167-178.	13.7	94
30	Hydrolysis of an amide in a carboxypeptidase model using cobalt(III) and bifunctional catalysts. Journal of the American Chemical Society, 1987, 109, 1814-1826.	13.7	93
31	Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nature Chemistry, 2018, 10, 644-652.	13.6	91
32	Toward \hat{i}^2 -Amino Acid Proteins: \hat{A} A Cooperatively Folded \hat{i}^2 -Peptide Quaternary Structure. Journal of the American Chemical Society, 2006, 128, 11338-11339.	13.7	89
33	Molecular Recognition of Protein Surfaces:Â High Affinity Ligands for the CBP KIX Domain. Journal of the American Chemical Society, 2003, 125, 14336-14347.	13.7	88
34	Toward β-Amino Acid Proteins:  Design, Synthesis, and Characterization of a Fifteen Kilodalton β-Peptide Tetramer. Journal of the American Chemical Society, 2008, 130, 821-823.	13.7	84
35	High Affinity, Paralog-Specific Recognition of the Mena EVH1 Domain by a Miniature Protein. Journal of the American Chemical Society, 2004, 126, 4-5.	13.7	82
36	Miniature Protein Inhibitors of the p53-hDM2 Interaction. ChemBioChem, 2006, 7, 29-31.	2.6	81

#	Article	IF	CITATIONS
37	A new strategy for directed protein cleavage. Tetrahedron Letters, 1992, 33, 895-898.	1.4	78
38	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	11.3	78
39	Solution Structure of a \hat{I}^2 -Peptide Ligand for hDM2. Journal of the American Chemical Society, 2005, 127, 4118-4119.	13.7	7 5
40	Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. Journal of the American Chemical Society, 2016, 138, 3175-3182.	13.7	73
41	A Rapid Library Screen for Tailoring \hat{l}^2 -Peptide Structure and Function. Journal of the American Chemical Society, 2005, 127, 14584-14585.	13.7	70
42	In Silico Improvement of β ³ -Peptide Inhibitors of p53•hDM2 and p53•hDMX. Journal of the American Chemical Society, 2009, 131, 6356-6357.	13.7	68
43	Surveying Protein Structure and Function Using Bis-Arsenical Small Molecules. Accounts of Chemical Research, 2011, 44, 654-665.	15.6	67
44	\hat{l}^2 -Peptides with improved affinity for hDM2 and hDMX. Bioorganic and Medicinal Chemistry, 2009, 17, 2038-2046.	3.0	66
45	Design and High-Resolution Structure of a \hat{l}^2 ³ -Peptide Bundle Catalyst. Journal of the American Chemical Society, 2014, 136, 6810-6813.	13.7	65
46	Miniature Homeodomains:Â High Specificity without an N-Terminal Arm. Journal of the American Chemical Society, 2003, 125, 3416-3417.	13.7	64
47	Paralog-Selective Ligands for Bcl-2 Proteins. Journal of the American Chemical Society, 2005, 127, 1596-1597.	13.7	64
48	Biophysical and Structural Characterization of a Robust Octameric \hat{l}^2 -Peptide Bundle. Journal of the American Chemical Society, 2007, 129, 14746-14751.	13.7	63
49	Self-assembling ionophores. Journal of the American Chemical Society, 1989, 111, 5976-5977.	13.7	62
50	Certain bZIP peptides bind DMA sequentially as monomers and dimerize on the DMA. Nature Structural Biology, 1997, 4, 115-117.	9.7	59
51	A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Molecular Biology of the Cell, 2017, 28, 1676-1687.	2.1	55
52	Increasing the Kinase Specificity of K252a by Protein Surface Recognition. Organic Letters, 2005, 7, 1695-1698.	4.6	54
53	Biophysical Characterization of a \hat{l}^2 -Peptide Bundle: \hat{A} Comparison to Natural Proteins. Journal of the American Chemical Society, 2007, 129, 5344-5345.	13.7	54
54	Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes <i>in Vitro</i> . ACS Central Science, 2019, 5, 1289-1294.	11.3	54

#	Article	IF	Citations
55	Bipartite Tetracysteine Display Reveals Allosteric Control of Ligand-Specific EGFR Activation. ACS Chemical Biology, 2012, 7, 1367-1376.	3.4	51
56	Î ² -Peptide Bundles with Fluorous Cores. Journal of the American Chemical Society, 2010, 132, 3658-3659.	13.7	48
57	β-Peptide bundles: Design. Build. Analyze. Biosynthesize Chemical Communications, 2016, 52, 7420-7432.	4.1	47
58	Cellâ€Permeable βâ€Peptide Inhibitors of p53/hDM2 Complexation. ChemBioChem, 2009, 10, 990-993.	2.6	46
59	Longâ€Term Liveâ€Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe Dilâ€SiR. Angewandte Chemie - International Edition, 2017, 56, 10408-10412.	13.8	44
60	Initiation of Protein Synthesis with Nonâ€Canonical Amino Acids Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 3122-3126.	13.8	43
61	A view to a kill: ligands for Bcl-2 family proteins. Current Opinion in Chemical Biology, 2002, 6, 479-485.	6.1	42
62	Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region. Chemistry and Biology, 2015, 22, 776-784.	6.0	42
63	Fluorescence Correlation Spectroscopy Reveals Efficient Cytosolic Delivery of Protein Cargo by Cell-Permeant Miniature Proteins. ACS Central Science, 2018, 4, 1379-1393.	11.3	42
64	Distribution of labor among bZIP segments in the control of DNA affinity and specificity. Chemistry and Biology, 1994, 1, 143-151.	6.0	41
65	Electrostatic Mechanism for DNA Bending by bZIP Proteinsâ€. Biochemistry, 1997, 36, 10033-10038.	2.5	41
66	HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 512-521.	7.1	41
67	Improved Assays for Determining the Cytosolic Access of Peptides, Proteins, and Their Mimetics. Biochemistry, 2013, 52, 9036-9046.	2.5	40
68	Extremely Bright, Near-IR Emitting Spontaneously Blinking Fluorophores Enable Ratiometric Multicolor Nanoscopy in Live Cells. ACS Central Science, 2021, 7, 1419-1426.	11.3	40
69	DNA Bending and Binding by Metallo-Zipper Models of bZIP Proteins. Journal of the American Chemical Society, 1995, 117, 8899-8907.	13.7	39
70	A Î ² -Peptide Agonist of the GLP-1 Receptor, a Class B GPCR. Organic Letters, 2013, 15, 5318-5321.	4.6	39
71	Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons. ACS Chemical Biology, 2021, 16, 766-774.	3.4	39
72	Polyether tethered oligonucleotide probes. Journal of the American Chemical Society, 1991, 113, 6324-6326.	13.7	38

#	Article	IF	Citations
73	Identification of a $\hat{1}^2$ 3-peptide HIV fusion inhibitor with improved potency in live cells. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3736-3738.	2.2	38
74	Tethered oligonucleotide probes. A strategy for the recognition of structured RNA. Journal of the American Chemical Society, 1991, 113, 5109-5111.	13.7	35
75	Binding Mode and Transcriptional Activation Potential of High Affinity Ligands for the CBP KIX Domain. Journal of the American Chemical Society, 2005, 127, 4649-4658.	13.7	35
76	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	2.8	35
77	Methodology for optimizing functional miniature proteins based on avian pancreatic polypeptide using phage display. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1501-1505.	2.2	34
78	Positive Allostery in Metal Ion Binding by a Cooperatively Folded \hat{I}^2 -Peptide Bundle. Journal of the American Chemical Society, 2014, 136, 14726-14729.	13.7	34
79	Visualizing protein partnerships in living cells and organisms. Current Opinion in Chemical Biology, 2011, 15, 781-788.	6.1	33
80	Mechanism of Allosteric Coupling into and through the Plasma Membrane by EGFR. Cell Chemical Biology, 2018, 25, 857-870.e7.	5.2	32
81	Selection of structure-specific inhibitors of the HIV Rev-Rev response element complex. Journal of the American Chemical Society, 1994, 116, 437-442.	13.7	28
82	Bipartite Tetracysteine Display Requires Site Flexibility for ReAsH Coordination. ChemBioChem, 2009, 10, 1644-1647.	2.6	28
83	HIDE Probes: A New Toolkit for Visualizing Organelle Dynamics, Longer and at Super-Resolution. Biochemistry, 2017, 56, 5194-5201.	2.5	28
84	Rewiring Kinase Specificity with a Synthetic Adaptor Protein. Journal of the American Chemical Society, 2012, 134, 3976-3978.	13.7	27
85	Inhibiting Epidermal Growth Factor Receptor at a Distance. Journal of the American Chemical Society, 2014, 136, 11232-11235.	13.7	27
86	Relationship between Salt-Bridge Identity and 14-Helix Stability of \hat{l}^2 3-Peptides in Aqueous Buffer. Organic Letters, 2006, 8, 807-810.	4.6	26
87	A \hat{l}^2 -Boronopeptide Bundle of Known Structure As a Vehicle for Polyol Recognition. Organic Letters, 2013, 15, 5048-5051.	4.6	26
88	Two-color nanoscopy of organelles for extended times with HIDE probes. Nature Communications, 2020, 11, 4271. Design and Evolution of a Miniature Bol-2 Binding Protein We thank the HHMI Biopolymer/Keck	12.8	26
89	Foundation Biotechnology Resource Laboratory (Yale University School of Medicine, New Haven, CT) for oligonucleotide and peptide synthesis and amino acid analysis and Professor Jennifer Doudna (Yale University) for use of a Perseptive Voyager-DE (MALDI-TOF) mass spectrometer. We are grateful also to Dr. Junving Yuan and Dr. Alexi Degterey (Harvard Medical School) for a generous gift of	13.8	26
90	Bcl-X(L)-His(6) and Stacey E. R. Angewandte Chemie - International Edition, 2001, 40, 3806-3809. Tetrameric β ³ â€Peptide Bundles. ChemBioChem, 2008, 9, 1576-1578.	2.6	25

#	Article	IF	Citations
91	HochaufgelŶste Visualisierung des Golgiâ€Apparats in lebenden Zellen mit einem bioorthogonalen Ceramid. Angewandte Chemie, 2014, 126, 10407-10412.	2.0	24
92	Kinetic and thermodynamic analysis of RNA binding by tethered oligonucleotide probes: alternative structures and conformational changes. Journal of the American Chemical Society, 1993, 115, 5005-5014.	13.7	22
93	Engineering a Monomeric Miniature Protein. Journal of the American Chemical Society, 2007, 129, 11024-11025.	13.7	22
94	Enhancing β ³ â€Peptide Bundle Stability by Design. ChemBioChem, 2011, 12, 1035-1038.	2.6	22
95	Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydrate Research, 2013, 382, 36-42.	2.3	22
96	Influence of Macrocyclization on Allosteric, Juxtamembrane-Derived, Stapled Peptide Inhibitors of the Epidermal Growth Factor Receptor (EGFR). Organic Letters, 2014, 16, 4916-4919.	4.6	22
97	Improved Carbohydrate Recognition in Water with an Electrostatically Enhanced \hat{I}^2 -Peptide Bundle. Organic Letters, 2015, 17, 4718-4721.	4.6	21
98	Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH. Journal of the American Chemical Society, 2016, 138, 7143-7150.	13.7	21
99	Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Current Opinion in Chemical Biology, 2021, 65, 154-162.	6.1	21
100	Structural Differences between Wild-Type and Double Mutant EGFR Modulated by Third-Generation Kinase Inhibitors. Journal of the American Chemical Society, 2015, 137, 6456-6459.	13.7	20
101	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	5.4	20
102	Endosome motility defects revealed at super-resolution in live cells using HIDE probes. Nature Chemical Biology, 2020, 16, 408-414.	8.0	20
103	Encodable Activators of Src Family Kinases. Journal of the American Chemical Society, 2006, 128, 16506-16507.	13.7	19
104	Defects in the Assembly of Ribosomes Selected for \hat{l}^2 -Amino Acid Incorporation. Biochemistry, 2019, 58, 4494-4504.	2.5	19
105	Visualizing Tyrosine Kinase Activity with Bipartite Tetracysteine Display. ChemBioChem, 2010, 11, 2089-2091.	2.6	18
106	Remodeling a \hat{I}^2 -peptide bundle. Chemical Science, 2013, 4, 319-324.	7.4	18
107	Unique arginine array improves cytosolic localization of hydrocarbon-stapled peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 1197-1202.	3.0	18
108	Substituent effect on the electrochemical oxidation of arylmethyl anions. 3. Effect of methyl substitution on diarylmethyl anions. Journal of Organic Chemistry, 1983, 48, 3458-3464.	3.2	17

#	Article	IF	Citations
109	Binding of alkali-metal cations by self-assembling ionophore complexes of nickel(II). Inorganic Chemistry, 1992, 31, 1308-1310.	4.0	16
110	Virtually unidirectional binding of TBP to the AdMLP TATA box within the quaternary complex with TFIIA and TFIIB. Chemistry and Biology, 2000, 7, 601-610.	6.0	16
111	Effective Molarity <i>Redux</i> : Proximity as a Guiding Force in Chemistry and Biology. Israel Journal of Chemistry, 2013, 53, 567-576.	2.3	16
112	RNA sectors and allosteric function within the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19879-19887.	7.1	16
113	Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles. Journal of the American Chemical Society, 2022, 144, 12138-12146.	13.7	16
114	Mechanism of DNA Binding Enhancement by Hepatitis B Virus Protein pXâ€. Biochemistry, 1997, 36, 15349-15355.	2.5	15
115	STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells. Methods in Molecular Biology, 2017, 1663, 65-78.	0.9	15
116	Synthesis and Biological Evaluation of an Indazole-Based Selective Protein Arginine Deiminase 4 (PAD4) Inhibitor. ACS Medicinal Chemistry Letters, 2018, 9, 1013-1018.	2.8	15
117	Kinetic Preference for Oriented DNA Binding by the Yeast TATA-Binding Protein TBP. Biochemistry, 2001, 40, 6257-6266.	2.5	14
118	On the Mechanism of Peptide Cleavage by Carboxypeptidase A and Related Enzymes. Chemistry Letters, 1987, 16, 1-4.	1.3	13
119	Relationship between Folding and Function in a Sequence-Specific Miniature DNA-Binding Proteinâ€. Biochemistry, 2005, 44, 7469-7478.	2.5	13
120	Interactions of AsCy3 with Cysteine-Rich Peptides. Organic Letters, 2014, 16, 3824-3827.	4.6	13
121	Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals. ACS Applied Materials & Confronting Racism in Chemistry Journals & Confronting Racism In Chemistry Academy in Chemist	8.0	13
122	Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates. ACS Central Science, 2022, 8, 473-482.	11.3	13
123	Miniature Protein Ligands for EVH1 Domains:  Interplay between Affinity, Specificity, and Cell Motility. Biochemistry, 2007, 46, 13541-13553.	2.5	12
124	Nonspecific DNA bending and the specificity of protein-DNA interactions. Science, 1995, 269, 989-990.	12.6	11
125	Conformation of Tax-response elements in the human T-cell leukemia virus type I promoter. Chemistry and Biology, 1995, 2, 819-826.	6.0	11
126	Triplex Tethered Oligonucleotide Probes. Journal of the American Chemical Society, 1996, 118, 10896-10897.	13.7	11

#	Article	IF	Citations
127	Hepatitis B Virus Protein pX Enhances the Monomer Assembly Pathway of bZIP·DNA Complexesâ€. Biochemistry, 2001, 40, 2835-2843.	2.5	11
128	Quantification of protein delivery in live cells using fluorescence correlation spectroscopy. Methods in Enzymology, 2020, 641, 477-505.	1.0	11
129	Convenient Syntheses of Bifunctional Metal Chelates. Journal of Organic Chemistry, 1995, 60, 3924-3927.	3.2	10
130	Kinetics and Mechanism of RNA Binding by Triplex Tethered Oligonucleotide Probes. Journal of the American Chemical Society, 1997, 119, 11591-11597.	13.7	10
131	Sequence Determinants of the Intrinsic Bend in the Cyclic AMP Response Elementâ€. Biochemistry, 1998, 37, 7113-7118.	2.5	10
132	Hepatitis B Virus X Protein Activates Transcription by Bypassing CREB Phosphorylation, Not by Stabilizing bZIPâ^'DNA Complexesâ€. Biochemistry, 2001, 40, 693-703.	2.5	10
133	Synthesis of N-α-boc-N-ε-tribenzyl EDTA-L-lysine. An amino acid analogue suitable for solid phase peptide synthesis. Tetrahedron, 1991, 47, 2535-2542.	1.9	9
134	Interaction, assembly and processing at the chemistryâ€"biology interface. Current Opinion in Chemical Biology, 1998, 2, 9-10.	6.1	9
135	Effects of nucleic acids and polyanions on dimer formation and DNA binding by bZIP and bHLHZip transcription factors. Bioorganic and Medicinal Chemistry, 2001, 9, 2435-2443.	3.0	9
136	Genetic Code Expansion in the Engineered Organism Vmax X2: High Yield and Exceptional Fidelity. ACS Central Science, 2021, 7, 1500-1507.	11.3	9
137	Direct Visualization of Protein Association in Living Cells with Complexâ€Edited Electron Microscopy. Angewandte Chemie - International Edition, 2010, 49, 7952-7954.	13.8	8
138	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	3.5	8
139	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	2.5	8
140	Inhibition of revÂ-RRE complexation by triplex tethered oligonucleotide probes. Bioorganic and Medicinal Chemistry, 1997, 5, 1123-1129.	3.0	7
141	Relationship between side-chain branching and stoichiometry in \hat{l}^2 3-peptide bundles. Tetrahedron, 2012, 68, 4342-4345.	1.9	7
142	Cytosolic Delivery of Argininosuccinate Synthetase Using a Cell-Permeant Miniature Protein. ACS Central Science, 2021, 7, 641-649.	11.3	7
143	A general scheme for incorporating nonnatural functionality into peptides. Tetrahedron Letters, 1991, 32, 3325-3328.	1.4	6
144	A uniquely modified RNA: Introduction of a single RNA cleavage agent into the M1 ribozyme. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2133-2138.	2.2	6

#	Article	IF	CITATIONS
145	Initiation of Protein Synthesis with Non anonical Amino Acids Inâ€Vivo. Angewandte Chemie, 2020, 132, 3146-3150.	2.0	6
146	Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nature Communications, 2022, 13, 180.	12.8	6
147	Preinitiation complex assembly: potentially a bumpy path. Current Opinion in Chemical Biology, 1998, 2, 11-17.	6.1	5
148	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
149	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
150	Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Reports, 2022, 39, 110630.	6.4	5
151	Studies on the formation of DNAÂ-protein interfaces: DNA specificity and straightening by CREB. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1621-1626.	2.2	4
152	Molecular imaging: sine labore nihil. Current Opinion in Chemical Biology, 2011, 15, 749-751.	6.1	4
153	Building on 50 Years of Excellence Where Chemistry Meets Life Science. Biochemistry, 2016, 55, 4997-4997.	2.5	4
154	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	3.8	4
155	Foldamers wave to the ribosome. Nature Chemistry, 2018, 10, 377-379.	13.6	4
156	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
157	Initiating protein synthesis with noncanonical monomers in vitro and in vivo. Methods in Enzymology, 2021, 656, 495-519.	1.0	4
158	Longâ€Term Liveâ€Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe Dilâ€SiR. Angewandte Chemie, 2017, 129, 10544-10548.	2.0	3
159	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
160	Evidence for induced DNA bending by the yeast zinc cluster protein PUT3. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2049-2054.	2.2	2
161	Yes, Biochemistry Now Publishes Communications and Something New—From the Bench. Biochemistry, 2017, 56, 2863-2864.	2.5	2
162	GEM-NET: Lessons in Multi-Institution Teamwork Using Collaboration Software. ACS Central Science, 2019, 5, 1159-1169.	11.3	2

#	Article	IF	CITATIONS
163	Discrete Coiled Coil Rotamers Form within the EGFRvIII Juxtamembrane Domain. Biochemistry, 2020, 59, 3965-3972.	2.5	2
164	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
165	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
166	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
167	Introducing the "Seeing into Cells―Special Issue. Biochemistry, 2017, 56, 5161-5162.	2.5	1
168	The New Biochemistry Editorial Team. Biochemistry, 2017, 56, 4289-4290.	2.5	1
169	Ronald Breslow (1931–2017). Angewandte Chemie - International Edition, 2018, 57, 37-37.	13.8	1
170	Introducing "Future of Biochemistry: The International Issue― Biochemistry, 2019, 58, 1-6.	2. 5	1
171	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
172	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
173	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
174	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
175	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
176	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
177	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
178	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
179	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
180	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1

#	Article	IF	CITATIONS
181	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
182	Chemsearch: collaborative compound libraries with structure-aware browsing. Bioinformatics Advances, 2021, 1 , .	2.4	1
183	Allosteric Inhibition of the Epidermal Growth Factor Receptor. Biochemistry, 2021, 60, 500-512.	2.5	1
184	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
185	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
186	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
187	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
188	?-Peptides as Inhibitors of Protein?Protein Interactions. ChemInform, 2005, 36, no.	0.0	0
189	Supramolecular Chemistry for Biology, Materials and Medicine. Israel Journal of Chemistry, 2013, 53, 495-496.	2.3	0
190	Introducing the "Future of Biochemistry―Special Issue. Biochemistry, 2018, 57, 1-8.	2.5	0
191	Special Issue on Discovering New Tools. Biochemistry, 2018, 57, 4605-4606.	2.5	0
192	Welcome New Associate Editor, Squire Booker. Biochemistry, 2019, 58, 5099-5099.	2.5	0
193	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
194	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
195	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
196	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
197	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
198	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0

#	Article	IF	CITATIONS
199	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	O
200	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
201	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
202	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
203	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
204	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
205	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
206	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
207	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
208	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
209	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
210	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
211	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
212	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
213	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
214	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
215	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
216	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0

#	Article	lF	CITATIONS
217	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	5.1	O
218	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
219	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
220	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Samp; Engineering Data, 2020, 65, 2253-2254.	1.9	0
221	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	О
222	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
223	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
224	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
225	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
226	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
227	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
228	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
229	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
230	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
231	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
232	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
233	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	O
234	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0

#	Article	IF	CITATIONS
235	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3. 3	O
236	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
237	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
238	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
239	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
240	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5. 3	0
241	Welcome New Executive Editor, Bryan Roth. Biochemistry, 2020, 59, 2121-2121.	2.5	0
242	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5 . 4	0
243	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
244	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
245	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
246	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
247	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
248	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
249	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
250	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
251	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5. 2	0
252	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	O
254	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
255	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
256	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
257	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	O
258	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
259	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
260	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
261	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
262	Introducing "Future of Biochemistry 2020: The Asia-Pacific Issue― Biochemistry, 2020, 59, 1-7.	2.5	0
263	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
264	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
265	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
266	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
268	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
269	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Emp; Technology, 2020, 54, 5307-5308.	10.0	0
270	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	O
272	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
273	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
274	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
275	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
276	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
277	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
278	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
279	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
280	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
281	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
282	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
283	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
284	In and out: Trafficking of peptideâ€based materials. FASEB Journal, 2011, 25, 206.3.	0.5	0
285	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
286	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
287	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
288	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0

#	Article	IF	CITATIONS
289	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
290	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
291	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
292	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
293	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
294	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
295	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
296	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
297	Introducing the 60th Anniversary of Biochemistry Special Issue. Biochemistry, 2021, 60, 3409-3409.	2.5	0