Henrik Schneidewind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199109/publications.pdf

Version: 2024-02-01

1163117 996975 16 275 8 15 citations g-index h-index papers 17 17 17 481 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tailored Multiâ€Color Dispersive Wave Formation in Quasiâ€Phaseâ€Matched Exposed Core Fibers. Advanced Science, 2022, 9, e2103864.	11.2	6
2	Attenuation coefficients of selected organic and inorganic solvents in the mid-infrared spectral domain. Optical Materials Express, 2022, 12, 1754.	3.0	12
3	Exceptionally high coupling of light into optical fibers via all-dielectric nanostructures. , 2021, , .		O
4	Plasmonic Metalensâ€Enhanced Singleâ€Mode Fibers: A Pathway Toward Remote Light Focusing. Advanced Photonics Research, 2021, 2, 2100100.	3.6	13
5	Nanostructure-Empowered Efficient Coupling of Light into Optical Fibers at Extraordinarily Large Angles. ACS Photonics, 2020, 7, 2834-2841. Measurements of Microwave Vortex Response in DC Magnetic Fields in Tl <inline-formula> <tex-math< td=""><td>6.6</td><td>20</td></tex-math<></inline-formula>	6.6	20
6	notation="LaTeX">\$_2\$ Ba <inline-formula> <tex-math notation="LaTeX">\$_2\$</tex-math> </inline-formula> CaCu <inline-formula> <tex-math notation="LaTeX">\$_2\$</tex-math> </inline-formula> O <inline-formula> <tex-math notation="LaTeX">\$_{8+x}\$</tex-math> </inline-formula> Films. IEEE Transactions on Applied	1.7	2
7	Superconductivity, 2019, 29, 1-5. Nanoapertures without Nanolithography. ACS Photonics, 2019, 6, 30-37.	6.6	1
8	Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber. Optics Letters, 2019, 44, 626.	3.3	9
9	Electric current-driven spectral tunability of surface plasmon polaritons in gold coated tapered fibers. AIP Advances, 2018, 8, 095113.	1.3	1
10	Plasmon response evaluation based on image-derived arbitrary nanostructures. Nanoscale, 2018, 10, 9830-9839.	5.6	16
11	Bunimovich Stadium-Like Resonator for Randomized Fiber Laser Operation. Photonics, 2018, 5, 17.	2.0	1
12	Photonic candle – focusing light using nano-bore optical fibers. Optics Express, 2018, 26, 31706.	3.4	4
13	Nanoboomerang-based inverse metasurfaces—A promising path towards ultrathin photonic devices for transmission operation. APL Photonics, 2017, 2, 036102.	5.7	7
14	A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale, 2017, 9, 391-401.	5. 6	108
15	Nanofilm-induced spectral tuning of third harmonic generation. Optics Letters, 2017, 42, 1812.	3.3	10
16	TlBaCaCuO-(2212) thin films on lanthanum aluminate and sapphire substrates for microwave filters. Superconductor Science and Technology, 2001, 14, 200-212.	3.5	65