
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8198816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Total Variation Constrained Graph Manifold Learning Strategy for Cerenkov Luminescence Tomography. Optics Express, 2022, 30, 1422.	1.7	8
2	A fully convolutional network (FCN) based automated ischemic stroke segment method using chemical exchange saturation transfer imaging. Medical Physics, 2022, 49, 1635-1647.	1.6	3
3	OPK_SNCA: Optimized prior knowledge via sparse non-convex approach for cone-beam X-ray luminescence computed tomography imaging. Computer Methods and Programs in Biomedicine, 2022, 215, 106645.	2.6	6
4	Accurate and fast reconstruction for bioluminescence tomography based on adaptive Newton hard thresholding pursuit algorithm. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 829.	0.8	6
5	VoxDMRN: a voxelwise deep max-pooling residual network for bioluminescence tomography reconstruction. Optics Letters, 2022, 47, 1729.	1.7	4
6	Nonconvex Laplacian Manifold Joint Method for Morphological Reconstruction of Fluorescence Molecular Tomography. Molecular Imaging and Biology, 2021, 23, 394-406.	1.3	7
7	Vessel segmentation from volumetric images: a multiâ€scale doubleâ€pathway network with classâ€balanced loss at the voxel level. Medical Physics, 2021, 48, 3804-3814.	1.6	4
8	Three-term conjugate gradient method for X-ray luminescence computed tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 985.	0.8	2
9	Xâ€ray luminescence computed tomography using a hybrid proton propagation model and <scp>Lassoâ€LSQR</scp> algorithm. Journal of Biophotonics, 2021, 14, e202100089.	1.1	10
10	Correntropy-induced metric with Laplacian kernel for robust fluorescence molecular tomography. Biomedical Optics Express, 2021, 12, 5991.	1.5	5
11	Prior Compensation Algorithm for Cerenkov Luminescence Tomography From Single-View Measurements. Frontiers in Oncology, 2021, 11, 749889.	1.3	5
12	A robust elastic net-â,," ₁ â,," ₂ reconstruction method for x-ray luminescence computed tomography. Physics in Medicine and Biology, 2021, 66, 195005.	1.6	7
13	A Multilevel Probabilistic Cerenkov Luminescence Tomography Reconstruction Framework Based on Energy Distribution Density Region Scaling. Frontiers in Oncology, 2021, 11, 751055.	1.3	4
14	An extraction strategy to determine a permissible region for fluorescence molecular tomography. Journal of Applied Physics, 2021, 130, 204902.	1.1	0
15	L1-L2 norm regularization via forward-backward splitting for fluorescence molecular tomography. Biomedical Optics Express, 2021, 12, 7807.	1.5	14
16	A Finite Element Mesh Regrouping Strategy-Based Hybrid Light Transport Model for Enhancing the Efficiency and Accuracy of XLCT. Frontiers in Oncology, 2021, 11, 751139.	1.3	0
17	End-To-End Bioluminescence Tomography Reconstruction Based On Convolution Neural Network Scheme. , 2021, 2021, 3634-3639.		1
18	L ₁ –L ₂ Minimization Via A Proximal Operator For Fluorescence Molecular Tomography. , 2021, 2021, 3640-3645.		0

#	Article	IF	CITATIONS
19	The image reconstruction for fluorescence molecular tomography via a non-uniform mesh. Optical Review, 2020, 27, 31-38.	1.2	2
20	Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach. European Radiology, 2020, 30, 5602-5610.	2.3	16
21	Sparseâ€graph manifold learning method for bioluminescence tomography. Journal of Biophotonics, 2020, 13, e201960218.	1.1	13
22	Adaptive shrinking reconstruction framework for cone-beam X-ray luminescence computed tomography. Biomedical Optics Express, 2020, 11, 3717.	1.5	5
23	Hybrid reconstruction method for multispectral bioluminescence tomography with log-sum regularization. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1060.	0.8	4
24	An automatic multi-class coronary atherosclerosis plaque detection and classification framework. Medical and Biological Engineering and Computing, 2019, 57, 245-257.	1.6	20
25	Efficient image reconstruction for fluorescence molecular tomography via linear regression approximation scheme with dual augmented Lagrangian method. Multimedia Systems, 2019, 25, 135-145.	3.0	3
26	A fuzzy artificial neural network-based method for Cerenkov luminescence tomography. AIP Advances, 2019, 9, 065105.	0.6	4
27	A Novel Stacked Denoising Autoencoder-Based Reconstruction Framework for Cerenkov Luminescence Tomography. IEEE Access, 2019, 7, 85178-85189.	2.6	15
28	A permissible region strategy for fluorescence molecular tomography. Optical Review, 2019, 26, 523-530.	1.2	5
29	Accurate Segmentation of Heart Volume in CTA With Landmark-Based Registration and Fully Convolutional Network. IEEE Access, 2019, 7, 57881-57893.	2.6	5
30	Adaptively Hybrid \$3^{ext{rd}}\$ Simplified Spherical Harmonics With Diffusion Equation-Based Multispectral Cerenkov Luminescence Tomography. IEEE Access, 2019, 7, 160779-160785.	2.6	4
31	Half Thresholding Pursuit Algorithm for Fluorescence Molecular Tomography. IEEE Transactions on Biomedical Engineering, 2019, 66, 1468-1476.	2.5	20
32	A permissible region extraction based on a knowledge priori for X-ray luminescence computed tomography. Multimedia Systems, 2019, 25, 147-154.	3.0	4
33	Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Systems, 2019, 25, 109-118.	3.0	54
34	Multispectral bioluminescence tomography-based general iterative shrinkage and threshold algorithm. Scientia Sinica Informationis, 2019, 49, 726-738.	0.2	2
35	A hybrid clustering algorithm for multipleâ€source resolving in bioluminescence tomography. Journal of Biophotonics, 2018, 11, e201700056.	1.1	32
36	A monocentric centerline extraction method for ring-like blood vessels. Medical and Biological Engineering and Computing, 2018, 56, 695-707.	1.6	1

#	Article	IF	CITATIONS
37	Semi-Supervised Cerebrovascular Segmentation by Hierarchical Convolutional Neural Network. IEEE Access, 2018, 6, 67841-67852.	2.6	22
38	Sparse non-convex Lp regularization for cone-beam X-ray luminescence computed tomography. Journal of Modern Optics, 2018, 65, 2278-2289.	0.6	4
39	Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration. Journal of Applied Physics, 2018, 123, .	1.1	2
40	Adaptive threshold method for recovered images of FMT. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 256.	0.8	9
41	Three-way decision based reconstruction frame for fluorescence molecular tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 1814.	0.8	13
42	Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography. IEEE Transactions on Medical Imaging, 2017, 36, 1337-1346.	5.4	47
43	Performance evaluation of the simplified spherical harmonics approximation for cone-beam X-ray luminescence computed tomography imaging. Journal of Innovative Optical Health Sciences, 2017, 10, 1750005.	O.5	6
44	Laplacian manifold regularization method for fluorescence molecular tomography. Journal of Biomedical Optics, 2017, 22, 045009.	1.4	18
45	Combined multi-spectrum and orthogonal Laplacianfaces for fast CB-XLCT imaging with single-view data. Optical Review, 2017, 24, 693-704.	1.2	2
46	Non-convex sparse regularization approach framework for high multiple-source resolution in Cerenkov luminescence tomography. Optics Express, 2017, 25, 28068.	1.7	33
47	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle="italic">1<mml:mtext>-</mml:mtext><mml:mn fontstyle="italic">2</mml:mn </mml:mn </mml:mrow></mml:msub></mml:mrow> Regularization.	0.9	10
48	BioMed Research International, 2016, 2016, 1-9. Reconstruction for Limited-Projection Fluorescence Molecular Tomography Based on a Double-Mesh Strategy. BioMed Research International, 2016, 2016, 1-11.	0.9	8
49	The Design of an Open MRI 4-Channel Receive-Only Phased Array Knee Coil. Applied Magnetic Resonance, 2016, 47, 499-510.	0.6	3
50	Improved sparse reconstruction for fluorescence molecular tomography with L_1/2 regularization. Biomedical Optics Express, 2015, 6, 1648.	1.5	41
51	Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1928.	0.8	12
52	Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm. Journal of Innovative Optical Health Sciences, 2014, 07, 1450008.	0.5	6
53	Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. Journal of Innovative Optical Health Sciences, 2014, 07, 1350057.	0.5	18
54	Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Optics Communications, 2011, 284, 5871-5876.	1.0	29

#	Article	IF	CITATIONS
55	Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method. International Journal of Biomedical Imaging, 2011, 2011, 1-11.	3.0	18
56	Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Optics Express, 2010, 18, 24825.	1.7	95
57	Truncated Total Least Squares Method with a Practical Truncation Parameter Choice Scheme for Bioluminescence Tomography Inverse Problem. International Journal of Biomedical Imaging, 2010, 2010, 1-11.	3.0	25
58	Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization. IEEE Transactions on Biomedical Engineering, 2010, 57, 2583-2586.	2.5	26