
Jacinto Sa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8198237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic nitrate removal from water, past, present and future perspectives. Applied Catalysis B: Environmental, 2011, 104, 1-5.	10.8	221
2	Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis B: Environmental, 2009, 85, 192-200.	10.8	181
3	Organic Thiol Modified Pt/TiO ₂ Catalysts to Control Chemoselective Hydrogenation of Substituted Nitroarenes. ACS Catalysis, 2012, 2, 2079-2081.	5.5	159
4	A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. Review of Scientific Instruments, 2012, 83, 103105.	0.6	158
5	Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, 2020, 19, 1312-1318.	13.3	138
6	Polyhedral CeO ₂ Nanoparticles: Size-Dependent Geometrical and Electronic Structure. Journal of Physical Chemistry C, 2012, 116, 7312-7317.	1.5	108
7	Catalytic hydrogenation of tertiary amides at low temperatures and pressures using bimetallic Pt/Re-based catalysts. Journal of Catalysis, 2011, 283, 89-97.	3.1	104
8	FTIR study of aqueous nitrate reduction over Pd/TiO2. Applied Catalysis B: Environmental, 2008, 77, 409-417.	10.8	95
9	Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. Applied Catalysis B: Environmental, 2005, 57, 247-256.	10.8	91
10	Nuclear dependence of neutral-D-meson production by 800 GeV/cprotons. Physical Review Letters, 1994, 72, 2542-2545.	2.9	86
11	Can TiO2 promote the reduction of nitrates in water?. Journal of Catalysis, 2005, 234, 282-291.	3.1	76
12	Increased Dispersion of Supported Gold during Methanol Carbonylation Conditions. Journal of the American Chemical Society, 2009, 131, 6973-6975.	6.6	75
13	Redispersion of Gold Supported on Oxides. ACS Catalysis, 2012, 2, 552-560.	5.5	73
14	Measurement ofJ/l̈́ and l̈́' production in 800 GeV/cproton-gold collisions. Physical Review D, 1995, 52, 1307-1315.	1.6	72
15	Direct observation of charge separation on Au localized surface plasmons. Energy and Environmental Science, 2013, 6, 3584.	15.6	70
16	Influence of Methyl Halide Treatment on Gold Nanoparticles Supported on Activated Carbon. Angewandte Chemie - International Edition, 2011, 50, 8912-8916.	7.2	64
17	Nearly complete level scheme ofSn116below 4.3 MeV. Physical Review C, 1991, 43, 521-555.	1.1	62
18	Factors Influencing Hydride Formation in a Pd/TiO2 Catalyst. Journal of Physical Chemistry B, 2006, 110, 17090-17095.	1.2	61

#	Article	IF	CITATIONS
19	Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: Does size matter?. Journal of Catalysis, 2010, 275, 99-107.	3.1	60
20	SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths. Analyst, The, 2010, 135, 2260.	1.7	60
21	Scientific Opportunities for Heterogeneous Catalysis Research at the SuperXAS and SNBL Beam Lines. Chimia, 2012, 66, 699.	0.3	60
22	One-pot photo-reductive N-alkylation of aniline and nitroarene derivatives with primary alcohols over Au–TiO ₂ . Catalysis Science and Technology, 2013, 3, 94-98.	2.1	59
23	Photoformed electron transfer from TiO2 to metal clusters. Catalysis Communications, 2008, 9, 1991-1995.	1.6	56
24	Characterization of silica-supported dodecatungstic heteropolyacids as a function of their dehydroxylation temperature. Dalton Transactions, 2009, , 2235.	1.6	53
25	Hydrogenation of Nitrobenzene Over Au/MeO _{<i>x</i>} Catalysts—A Matter of the Support. ChemCatChem, 2012, 4, 59-63.	1.8	53
26	Measurement of the Bottom-Quark Production Cross Section in 800 GeV/cProton-Gold Collisions. Physical Review Letters, 1995, 74, 3118-3121.	2.9	51
27	Effect of the reducing step on the properties of Pd-Cu bimetallic catalysts used for denitration. Applied Catalysis A: General, 2005, 294, 226-234.	2.2	50
28	Water Denitration over a Pd–Sn/Al2O3 Catalyst. Catalysis Letters, 2005, 105, 209-217.	1.4	49
29	High energy resolution off-resonant spectroscopy at sub-second time resolution: (Pt(acac)2) decomposition. Chemical Communications, 2012, 48, 10898.	2.2	48
30	Production ofJ/݈ at largexFin 800 GeV/cp-copper andp-beryllium collisions. Physical Review Letters, 1994, 72, 1318-1321.	2.9	45
31	Bi modified Pd/SnO2 catalysts for water denitration. Applied Catalysis B: Environmental, 2007, 73, 98-105.	10.8	44
32	Particle size and support effects in hydrogenation over supported gold catalysts. Catalysis Science and Technology, 2013, 3, 454-461.	2.1	44
33	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	1.3	44
34	Subsecond and in Situ Chemical Speciation of Pt/Al ₂ O ₃ during Oxidation–Reduction Cycles Monitored by High-Energy Resolution Off-Resonant X-ray Spectroscopy. Journal of the American Chemical Society, 2013, 135, 19071-19074.	6.6	43
35	Establishing nonlinearity thresholds with ultraintense X-ray pulses. Scientific Reports, 2016, 6, 33292.	1.6	43
36	Imaging of low temperature induced SMSI on Pd/TiO2 catalysts. Catalysis Letters, 2007, 114, 91-95.	1.4	41

#	Article	IF	CITATIONS
37	Hunting for the elusive shallow traps in TiO ₂ anatase. Chemical Communications, 2015, 51, 10914-10916.	2.2	40
38	A laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies. Journal of Analytical Atomic Spectrometry, 2019, 34, 1409-1415.	1.6	40
39	Ultra long-lived electron-hole separation within water-soluble colloidal ZnO nanocrystals: Prospective applications for solar energy production. Nano Energy, 2016, 30, 187-192.	8.2	39
40	Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. Nano Letters, 2021, 21, 1083-1089.	4.5	38
41	High Energy Resolution Off-Resonant Spectroscopy for X-Ray Absorption Spectra Free of Self-Absorption Effects. Physical Review Letters, 2014, 112, 173003.	2.9	37
42	Pretreatment Effect on Pt/CeO ₂ Catalyst in the Selective Hydrodechlorination of Trichloroethylene. Journal of Physical Chemistry C, 2010, 114, 17675-17682.	1.5	36
43	Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic. Sustainable Energy and Fuels, 2017, 1, 69-73.	2.5	35
44	Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency. Scientific Reports, 2017, 7, 8670.	1.6	35
45	A new technique for probing chirality via photoelectron circular dichroism. Analytica Chimica Acta, 2017, 984, 134-139.	2.6	35
46	E-beam evaporated TiO 2 and Cu-TiO 2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation. Applied Catalysis A: General, 2016, 526, 191-199.	2.2	34
47	Structure of the methanol synthesis catalyst determined by in situHERFD XAS and EXAFS. Catalysis Science and Technology, 2012, 2, 373-378.	2.1	33
48	Efficient visible light-driven water oxidation catalysed by an iron(<scp>iv</scp>) clathrochelate complex. Chemical Communications, 2019, 55, 3335-3338.	2.2	33
49	The oxidation state of copper in bimetallic (Pt–Cu, Pd–Cu) catalysts during water denitration. Catalysis Science and Technology, 2012, 2, 794.	2.1	32
50	Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse. Structural Dynamics, 2014, 1, 021101.	0.9	31
51	Real Time Determination of the Electronic Structure of Unstable Reaction Intermediates during Au ₂ O ₃ Reduction. Journal of Physical Chemistry Letters, 2014, 5, 80-84.	2.1	30
52	Hydrogen evolution with CsPbBr3 perovskite nanocrystals under visible light in solution. Materials Today Communications, 2018, 16, 90-96.	0.9	30
53	HERFD XAS/ATR-FTIR batch reactor cell. Physical Chemistry Chemical Physics, 2012, 14, 2164-2170.	1.3	29
54	Redispersion of Gold Multiple-Twinned Particles during Liquid-Phase Hydrogenation. ACS Catalysis, 2012, 2, 1394-1403.	5.5	29

#	Article	IF	CITATIONS
55	In situ hard X-ray quick RIXS to probe dynamic changes in the electronic structure of functional materials. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 161-165.	0.8	29
56	Temperature-programmed reduction of NiO nanoparticles followed by time-resolved RIXS. Physical Chemistry Chemical Physics, 2014, 16, 7692.	1.3	29
57	Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization. RSC Advances, 2016, 6, 95693-95697.	1.7	28
58	Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science, 2020, 510, 145419.	3.1	28
59	Dark-degradation of reactive brilliant blue X-BR in aqueous solution using α-Fe2O3. Journal of Non-Crystalline Solids, 2008, 354, 5018-5021.	1.5	27
60	Evaluation of Pt and Re oxidation state in a pressurized reactor: difference in reduction between gas and liquid phase. Chemical Communications, 2011, 47, 6590.	2.2	27
61	Rational design of oxynitride materials: From theory to experiment. CrystEngComm, 2013, 15, 2583.	1.3	27
62	Magnetic manipulation of molecules on a non-magnetic catalytic surface. Nanoscale, 2013, 5, 8462.	2.8	26
63	Determination of conduction and valence band electronic structure of anatase and rutile TiO 2. Journal of Chemical Sciences, 2014, 126, 511-515.	0.7	26
64	Simultaneous Hot Electron and Hole Injection upon Excitation of Gold Surface Plasmon. Journal of Physical Chemistry Letters, 2019, 10, 3140-3146.	2.1	26
65	N-TiO2/Cu-TiO2 double-layer films: Impact of stacking order on photocatalytic properties. Journal of Catalysis, 2017, 353, 116-122.	3.1	25
66	High energy resolution fluorescence detection XANES – an in situ method to study the interaction of adsorbed molecules with metal catalysts in the liquid phase. Catalysis Science and Technology, 2013, 3, 1497.	2.1	24
67	Evaluation of an in situ spatial resolution instrument for fixed beds through the assessment of the invasiveness of probes and a comparison with a micro-kinetic model. Journal of Catalysis, 2014, 319, 239-246.	3.1	24
68	The role of adsorbates in the green emission and conductivity of zinc oxide. Communications Chemistry, 2019, 2, .	2.0	24
69	Direct Observation of a Plasmon-Induced Hot Electron Flow in a Multimetallic Nanostructure. Nano Letters, 2020, 20, 8220-8228.	4.5	24
70	A metal-free blue chromophore derived from plant pigments. Science Advances, 2020, 6, eaaz0421.	4.7	24
71	Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses. Nature Communications, 2019, 10, 4761.	5.8	23
72	Friedel–Crafts Alkylation of Aromatics with Benzyl Alcohol over Goldâ€Modified Silica. ChemCatChem, 2011, 3, 119-121.	1.8	22

#	Article	IF	CITATIONS
73	An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor. Analyst, The, 2013, 138, 2858.	1.7	22
74	Remarkable stability of ionic gold supported on sulfated lanthanum oxide. Chemical Communications, 2009, , 4889.	2.2	21
75	Direct Determination of Metal Complexes' Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 805-811.	2.1	21
76	The Dynamic Structure of Gold Supported on Ceria in the Liquid Phase Hydrogenation of Nitrobenzene. ChemCatChem, 2012, 4, 236-242.	1.8	20
77	Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence. Analytical Chemistry, 2015, 87, 10815-10821.	3.2	20
78	Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO. Surface and Coatings Technology, 2020, 385, 125352.	2.2	20
79	Transient mid-IR study of electron dynamics in TiO2 conduction band. Analyst, The, 2013, 138, 1966.	1.7	19
80	Flow hydrogenation of p-nitrophenol with nano-Ag/Al ₂ O ₃ . RSC Advances, 2016, 6, 87564-87568.	1.7	19
81	A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catalysis Communications, 2017, 94, 65-68.	1.6	19
82	Role of the Metal Oxide Electron Acceptor on Gold–Plasmon Hot-Carrier Dynamics and Its Implication to Photocatalysis and Photovoltaics. ACS Applied Nano Materials, 2021, 4, 2052-2060.	2.4	19
83	Nuclear dependence ofJ/l̈́ production by 800 GeV/cprotons nearxF=0. Physical Review D, 1995, 52, 4251-4253.	1.6	18
84	A novel single-site manganese(ii) complex of a pyridine derivative as a catalase mimetic for disproportionation of H2O2 in water. Dalton Transactions, 2013, 42, 7761.	1.6	18
85	Scanning-free grazing emission x-ray fluorescence by means of an angular dispersive arrangement with a two-dimensional position-sensitive area detector. Review of Scientific Instruments, 2013, 84, 123102.	0.6	18
86	Novel in situ methodology to observe the interactions of chemotherapeutical Pt drugs with DNA under physiological conditions. Dalton Transactions, 2014, 43, 13839-13844.	1.6	18
87	Formal water oxidation turnover frequencies from MIL-101(Cr) anchored Ru(bda) depend on oxidant concentration. Chemical Communications, 2018, 54, 7770-7773.	2.2	18
88	Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance. Journal of Physical Chemistry Letters, 2019, 10, 1743-1749.	2.1	18
89	Activation of Alkanes by Goldâ€Modified Lanthanum Oxide. ChemCatChem, 2011, 3, 394-398.	1.8	17
90	Long‣asting Nonâ€hydrogenated Dark Titanium Dioxide: Medium Vacuum Anneal for Enhanced Visible Activity of Modified Multiphase Photocatalysts. ChemCatChem, 2018, 10, 2949-2954.	1.8	17

#	Article	IF	CITATIONS
91	Morpholine-based buffers activate aerobic photobiocatalysis <i>via</i> spin correlated ion pair formation. Catalysis Science and Technology, 2019, 9, 1365-1371.	2.1	17
92	Unveiling the role of bisulfide in the photocatalytic splitting of H2S in aqueous solutions. Applied Catalysis B: Environmental, 2020, 270, 118886.	10.8	17
93	Nuclear effects on heavy quark production results from Fermilab experiments E772 and E789. Nuclear Physics A, 1992, 544, 197-207.	0.6	16
94	Effective catalytic disproportionation of aqueous H ₂ O ₂ with di- and mono-nuclear manganese(<scp>ii</scp>) complexes containing pyridine alcohol ligands. Dalton Transactions, 2014, 43, 8599-8608.	1.6	16
95	Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy. Biophysical Journal, 2016, 110, 1304-1311.	0.2	16
96	Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence. Nanoscale, 2015, 7, 9320-9330.	2.8	15
97	Chemoselective flow hydrogenation of α,β – Unsaturated aldehyde with nano-nickel. Catalysis Communications, 2017, 98, 17-21.	1.6	15
98	Can Energetic Terahertz Pulses Initiate Surface Catalytic Reactions on the Picosecond Time Scale?. Chimia, 2011, 65, 323.	0.3	14
99	The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2223-2229.	2.1	14
100	Magnetic Manipulation of Spontaneous Emission from Inorganic CsPbBr ₃ Perovskites Nanocrystals. Advanced Optical Materials, 2016, 4, 2004-2008.	3.6	14
101	Inorganic Ions Assisted the Anisotropic Growth of CsPbCl ₃ Nanowires with Surface Passivation Effect. ACS Applied Materials & amp; Interfaces, 2018, 10, 29574-29582.	4.0	14
102	Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions. Catalysis Science and Technology, 2019, 9, 2682-2688.	2.1	14
103	Visualization of water vapour flow in a packed bed adsorber by near-infrared diffused transmittance tomography. Chemical Engineering Science, 2011, 66, 6407-6423.	1.9	13
104	In situ infrared spectroscopy on the gas phase hydrogenation of nitrobenzene. Catalysis Communications, 2012, 27, 83-87.	1.6	13
105	Light-induced ultrafast proton-coupled electron transfer responsible for H2 evolution on silver plasmonics. Materials Today, 2018, 21, 590-593.	8.3	13
106	Onâ€ŧheâ€fly Catalyst Modification: Strategy to Improve Catalytic Processes Selectivity and Understanding. ChemCatChem, 2019, 11, 3355-3365.	1.8	13
107	Fine tuning of gold electronic structure by IRMOF post-synthetic modification. RSC Advances, 2013, 3, 12043.	1.7	12
108	p-Nitrophenol flow hydrogenation with nano-Cu2O grafted on polymeric resin. Catalysis Communications, 2017, 92, 61-64.	1.6	12

#	Article	IF	CITATIONS
109	Hidden gapless states during thermal transformations of preorganized zinc alkoxides to zinc oxide nanocrystals. Materials Horizons, 2018, 5, 905-911.	6.4	11
110	Comment on "The Critical evaluation of in situ probe techniques for catalytic honeycomb monoliths― by Hettel et al Catalysis Today, 2014, 236, 206-208.	2.2	10
111	High energy resolution off-resonant spectroscopy: A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 136, 23-33.	1.5	10
112	Tuning nano-nickel selectivity with tin in flow hydrogenation of 6-methyl-5-hepten-2-one by surface organometallic chemistry modification. Catalysis Today, 2018, 308, 38-44.	2.2	10
113	Determination of conduction and valence band electronic structure of La2Ti2O7 thin film. RSC Advances, 2014, 4, 11420.	1.7	9
114	Differences between bulk and surface electronic structure of doped TiO2 with soft-elements (C, N and) Tj ETQq(0 0 rgBT 2.0	/Oyerlock 10
115	The influence of nitrogen doping on the electronic structure of the valence and conduction band in TiO ₂ . Journal of Synchrotron Radiation, 2019, 26, 145-151.	1.0	9
116	Nuclear dynamics ofOs192as probed in neutron scattering. Physical Review C, 1989, 40, 2509-2519.	1.1	8
117	Three–Dimensional Water Vapor Visualization in Porous Packing by Near-Infrared Diffuse Transmittance Tomography. Industrial & Engineering Chemistry Research, 2012, 51, 8875-8882.	1.8	8
118	Cr-doping effects on unoccupied d-band electronic structure of TiO2. Chemical Physics Letters, 2016, 664, 73-76.	1.2	8
119	Application of silica-supported Ir and Ir-M (M = Pt, Pd, Au) catalysts for low-temperature hydrodechlorination of tetrachloromethane. Science of the Total Environment, 2018, 644, 287-297.	3.9	8
120	<i>Onâ€ŧheâ€fly</i> Catalyst Accretion and Screening in Chemoselective Flow Hydrogenation. ChemCatChem, 2018, 10, 3641-3646.	1.8	8
121	Femtosecond lasers for mass spectrometry: Proposed application to catalytic hydrogenation of butadiene. Analyst, The, 2012, 137, 64-69.	1.7	7
122	Insights into the structure–activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives. Journal of Biological Inorganic Chemistry, 2015, 20, 841-853.	1.1	7
123	Mechanism of hydrolysis of a platinum(IV) complex discovered by atomic telemetry. Journal of Inorganic Biochemistry, 2018, 187, 56-61.	1.5	7
124	Inception of electronic damage of matter by photon-driven post-ionization mechanisms. Structural Dynamics, 2019, 6, 024901.	0.9	7
125	Comparative study of the around-Fermi electronic structure of 5 <i>d</i> metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies. Journal of Synchrotron Radiation, 2020, 27, 689-694.	1.0	7
126	Heterogeneous Catalysis Experiments at XFELs. Are we Close to Producing a Catalysis Movie?. Catalysis Letters, 2014, 144, 197-203.	1.4	6

#	Article	IF	CITATIONS
127	Resonant X-ray emission spectroscopy of platinum(<scp>ii</scp>) anticancer complexes. Analyst, The, 2016, 141, 1226-1232.	1.7	6
128	Influence of microwave activation on the catalytic behavior of Pd-Au/C catalysts employed in the hydrodechlorination of tetrachloromethane. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 375-388.	0.8	6
129	Search for the decayD0→μ+μâ^'. Physical Review D, 1994, 50, R9-R12.	1.6	5
130	Search for flavor-changing neutral currents and lepton-family-number violation in two-bodyD0decays. Physical Review D, 2000, 61, .	1.6	5
131	Dye-injected electron trapping in TiO2 determined by broadband transient infrared spectroscopy. Photochemical and Photobiological Sciences, 2014, 13, 1393-1396.	1.6	5
132	Continuous-Flow Hydrogenation of D-Xylose with Bimetallic Ruthenium Catalysts on Micrometric Alumina. Synthesis and Catalysis Open Access, 2017, 02, .	0.4	5
133	Reduction Mechanisms of Anticancer Osmium(VI) Complexes Revealed by Atomic Telemetry and Theoretical Calculations. Inorganic Chemistry, 2021, 60, 6663-6671.	1.9	5
134	A bioinspired nitrone precursor to a stabilized nitroxide radical. Free Radical Biology and Medicine, 2021, 168, 110-116.	1.3	5
135	Determination of catalytic reaction mechanisms by isotopic frequency response. Analyst, The, 2012, 137, 5374.	1.7	4
136	Study of the reactivity of silica supported tantalum catalysts with oxygen followed by in situ HEROS. Physical Chemistry Chemical Physics, 2015, 17, 18262-18264.	1.3	4
137	A 3D printed microliquid jet with an adjustable nozzle diameter. Analyst, The, 2015, 140, 6234-6238.	1.7	4
138	Novel photo-reactor for fast screening of photo-catalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 36-39.	2.0	4
139	Phototriggering lignin peroxidase with nanocatalysts to convert veratryl alcohol to high-value chemical veratryl aldehyde. Materials Today Sustainability, 2018, 1-2, 28-31.	1.9	4
140	Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of Sulcatone. Catalysts, 2020, 10, 1267.	1.6	4
141	Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene. AIMS Materials Science, 2017, 4, 1276-1288.	0.7	4
142	Direct Plasmonic Solar Cell Efficiency Dependence on Spiro-OMeTAD Li-TFSI Content. Nanomaterials, 2021, 11, 3329.	1.9	4
143	Radiation damage effects on the silicon microstrip detector in E789 - A fixed target experiment at fermilab. Nuclear Physics, Section B, Proceedings Supplements, 1993, 32, 425-430.	0.5	3
144	Controlling dark catalysis with quasi half-cycle terahertz pulses. Catalysis Science and Technology, 2017, 7, 1050-1054.	2.1	3

#	Article	IF	CITATIONS
145	State-Population Narrowing Effect in Two-Photon Absorption for Intense Hard X-ray Pulses. Applied Sciences (Switzerland), 2017, 7, 653.	1.3	3
146	Recoverable and Reusable Polymer Microbead-Supported Metal Nanocatalysts for Redox Chemical Transformations. ACS Applied Nano Materials, 2020, 3, 1722-1730.	2.4	3
147	A Parallel Pipelined Dataflow Trigger Processor. , 0, , .		2
148	A parallel pipelined dataflow trigger processor. IEEE Transactions on Nuclear Science, 1991, 38, 461-470.	1.2	2
149	The use of Resonant X-ray Emission Spectroscopy (RXES) for the electronic analysis of metal complexes and their interactions with biomolecules. Drug Discovery Today: Technologies, 2015, 16, 1-6.	4.0	2
150	Molecular Linking Selectivity on Self-Assembled Metal-Semiconductor Nano-Hybrid Systems. Nanomaterials, 2020, 10, 1378.	1.9	2
151	<i>In situ</i> observation of charge transfer and crystal field formation <i>via</i> high energy resolution X-ray spectroscopy during temperature programmed oxidation. Physical Chemistry Chemical Physics, 2020, 22, 14731-14735.	1.3	2
152	Tuning Nanoâ€Nickel Catalyst Hydrogenation Aptitude by Onâ€ŧheâ€Fly Zirconium Doping. ChemCatChem, 2020, 12, 3132-3138.	1.8	2
153	Plasmon-Mediated Oxidation Reaction on Au/p-Cu2O: The Origin of Hot Holes. Physchem, 2021, 1, 163-175.	0.5	2
154	Olefin Hydrogenation with Single-Site Gold. Acta Physica Polonica A, 2014, 125, 940-943.	0.2	2
155	Approaching the Attosecond Frontier of Dynamics in Matter with the Concept of X-ray Chronoscopy. Applied Sciences (Switzerland), 2022, 12, 1721.	1.3	2
156	Use of a track and vertex processor in a fixed-target charm experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 376, 49-58.	0.7	1
157	Alternative preparation of size-controlled thiol-capped gold colloids. Gold Bulletin, 2013, 46, 161-164.	1.1	1
158	Editors preface. Catalysis Today, 2013, 208, 1.	2.2	1
159	Hydrodechlorination Using Pd–Au Nanoparticles to Convert Chloro-Containing Compounds to Useful Chemicals. , 2016, , .		1
160	In situ high energy resolution off-resonant spectroscopy applied to a time-resolved study of single site Ta catalyst during oxidation. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 63-67.	0.6	1
161	Xâ€Ray Spectroscopy on Biological Systems. , 0, , .		1
162	Resonant X-ray Emission Spectroscopy with a SASE Beam. Applied Sciences (Switzerland), 2021, 11, 8775.	1.3	1

#	Article	IF	CITATIONS
163	Selective photocatalytic oxidation of 3-pyridinemethanol on platinized acid/base modified TiO2. Catalysis Science and Technology, 2021, 11, 4549-4559.	2.1	1
164	Spacims-Probing the Internal Behaviour of 3D Structured Materials. , 2012, , 3-25.		1
165	Concept for Unmanned Microfluidic Reactor for the Optimization and Production of Well-defined Nanoparticles. Chemical and Materials Engineering, 2014, 2, 166-168.	0.7	1
166	Special issue on modelling organisational processes. Information and Software Technology, 2003, 45, 1011-1013.	3.0	0
167	CO2 to Fuels. , 2014, , 93-122.		Ο
168	PhysChem: A New Physical Chemistry Journal. Physchem, 2021, 1, 1-3.	0.5	0
169	Hydrogenation by Iron Catalysts. , 2015, , 119-154.		Ο
170	Hydrogenation by Nickel Catalysts. , 2015, , 37-78.		0
171	Hydrogenation by Silver Catalysts. , 2015, , 155-196.		Ο
172	Introduction to Heterogeneous Hydrogenation and Its Application in the Fine Chemicals Industry. , 2015, , 1-36.		0
173	Hydrogenation by Copper Catalysts. , 2015, , 79-118.		0
174	Welcome to Physchem: Status and Prospects. Physchem, 2022, 2, 16-17.	0.5	0
175	Plasmonics photophysics basics and their photovoltaic application. , 0, , .		0