Huiqiong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8198094/publications.pdf Version: 2024-02-01

Ницономс 7нон

#	Article	IF	CITATIONS
1	Highâ€Efficiency Polymer Solar Cells Enhanced by Solvent Treatment. Advanced Materials, 2013, 25, 1646-1652.	11.1	455
2	Polymer Homoâ€Tandem Solar Cells with Best Efficiency of 11.3%. Advanced Materials, 2015, 27, 1767-1773.	11.1	408
3	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
4	A Biopolymer Heparin Sodium Interlayer Anchoring TiO ₂ and MAPbI ₃ Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706924.	11.1	199
5	Conductive Conjugated Polyelectrolyte as Holeâ€Transporting Layer for Organic Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 780-785.	11.1	193
6	Fine Multiâ€Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Postâ€Annealing. Advanced Materials, 2019, 31, e1903889.	11.1	178
7	Molecular Doping Enhances Photoconductivity in Polymer Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 7038-7044.	11.1	173
8	Facile Doping of Anionic Narrowâ€Bandâ€Gap Conjugated Polyelectrolytes During Dialysis. Angewandte Chemie - International Edition, 2013, 52, 12874-12878.	7.2	129
9	Molecular Engineering for Two-Dimensional Perovskites with Photovoltaic Efficiency Exceeding 18%. Matter, 2021, 4, 582-599.	5.0	123
10	High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule, 2022, 6, 444-457.	11.7	117
11	Interfacial Modification in Organic and Perovskite Solar Cells. Advanced Materials, 2019, 31, e1805708.	11.1	106
12	Highâ€Holeâ€Mobility Fieldâ€Effect Transistors Based on <i>Coâ€</i> Benzobisthiadiazoleâ€Quaterthiophene. Advanced Materials, 2012, 24, 6164-6168.	11.1	105
13	Regulating Bulkâ€Heterojunction Molecular Orientations through Surface Free Energy Control of Holeâ€Transporting Layers for Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1806921.	11.1	86
14	Effects of Nonradiative Losses at Charge Transfer States and Energetic Disorder on the Open ircuit Voltage in Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1705659.	7.8	77
15	Solution-Processed pH-Neutral Conjugated Polyelectrolyte Improves Interfacial Contact in Organic Solar Cells. ACS Nano, 2015, 9, 371-377.	7.3	73
16	Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors. Journal of Materials Chemistry A, 2017, 5, 17230-17239.	5.2	66
17	Temperature Tunable Selfâ€Doping in Stable Diradicaloid Thinâ€Film Devices. Advanced Materials, 2015, 27, 7412-7419	11.1	63
18	Role of interface properties in organic solar cells: from substrate engineering to bulk-heterojunction interfacial morphology. Materials Chemistry Frontiers, 2020, 4, 2863-2880.	3.2	61

#	Article	IF	CITATIONS
19	Chikungunya Outbreak in Guangdong Province, China, 2010. Emerging Infectious Diseases, 2012, 18, 493-495.	2.0	60
20	Fluorination with an enlarged dielectric constant prompts charge separation and reduces bimolecular recombination in non-fullerene organic solar cells with a high fill factor and efficiency >â€ [–] 13%. Nano Energy, 2019, 56, 494-501.	8.2	59
21	Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. Journal of Materials Chemistry A, 2019, 7, 3570-3576.	5.2	58
22	Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy, 2019, 58, 706-714.	8.2	52
23	Waterâ€Assisted Crystal Growth in Quasiâ€2D Perovskites with Enhanced Charge Transport and Photovoltaic Performance. Advanced Energy Materials, 2020, 10, 2001832.	10.2	52
24	Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy, 2018, 50, 169-175.	8.2	50
25	On the Understandings of Dielectric Constant and Its Impacts on the Photovoltaic Efficiency in Organic Solar Cells. Chinese Journal of Chemistry, 2021, 39, 381-390.	2.6	48
26	Highâ€Performance Solutionâ€Processed Smallâ€Molecule Solar Cells Based on a Dithienogermoleâ€Containing Molecular Donor. Advanced Energy Materials, 2015, 5, 1400987.	10.2	45
27	Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells. Joule, 2021, 5, 3154-3168.	11.7	45
28	Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination. Journal of Materials Chemistry C, 2017, 5, 9376-9382.	2.7	44
29	Facile development of CoAl-LDHs/RGO nanocomposites as photocatalysts for efficient hydrogen generation from water splitting under visible-light irradiation. Inorganic Chemistry Frontiers, 2019, 6, 1753-1760.	3.0	44
30	Recent progress in cathode interlayer materials for nonâ€fullerene organic solar cells. EcoMat, 2022, 4, .	6.8	44
31	Understanding the Impact of Bismuth Heterovalent Doping on the Structural and Photophysical Properties of CH ₃ NH ₃ PbBr ₃ Halide Perovskite Crystals with Nearâ€IR Photoluminescence. Chemistry - A European Journal, 2019, 25, 5480-5488.	1.7	42
32	Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6840-6848.	5.2	41
33	Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 10795-10801.	2.7	38
34	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	5.2	38
35	The epidemiological characteristics and genetic diversity of dengue virus during the third largest historical outbreak of dengue in Guangdong, China, in 2014. Journal of Infection, 2016, 72, 80-90.	1.7	37
36	A polyaspartic acid sodium interfacial layer enhances surface trap passivation in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 23895-23903.	5.2	37

#	Article	IF	CITATIONS
37	Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3186-3192.	2.5	37
38	Cathode interfacial layer-free all small-molecule solar cells with efficiency over 12%. Journal of Materials Chemistry A, 2019, 7, 15944-15950.	5.2	36
39	On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels. Nano Energy, 2020, 75, 105032.	8.2	34
40	Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells. Science China Chemistry, 2021, 64, 116-126.	4.2	34
41	Ultra-narrow bandgap non-fullerene organic solar cells with low voltage losses and a large photocurrent. Journal of Materials Chemistry A, 2018, 6, 19934-19940.	5.2	33
42	Regulating phase separation and molecular stacking by introducing siloxane to small-molecule donors enables high efficiency all-small-molecule organic solar cells. Energy and Environmental Science, 2022, 15, 2937-2947.	15.6	33
43	Synthesis, characterization and magnetic properties of transition metal salen complexes intercalated into layered MnPS3. Journal of Alloys and Compounds, 2007, 432, 247-252.	2.8	31
44	Understanding Temperatureâ€Dependent Charge Extraction and Trapping in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000550.	7.8	31
45	Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1842-1849.	8.8	29
46	Incorporating an Inert Polymer into the Interlayer Passivates Surface Defects in Methylammonium Lead Halide Perovskite Solar Cells. Chemistry - A European Journal, 2017, 23, 14650-14657.	1.7	28
47	High efficiency non-fullerene organic solar cells without electron transporting layers enabled by Lewis base anion doping. Nano Energy, 2018, 51, 736-744.	8.2	28
48	A conjugated microporous polymer film fabricated by <i>in situ</i> electro-chemical deposition as a hole transporting layer in organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 9044-9048.	2.7	27
49	Similar or different: the same Spiro-core but different alkyl chains with apparently improved device performance of perovskite solar cells. Science China Chemistry, 2019, 62, 739-745.	4.2	27
50	On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7855-7863.	2.7	26
51	Control of Nanomorphology in Fullerene-Free Organic Solar Cells by Lewis Acid Doping with Enhanced Photovoltaic Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 667-677.	4.0	24
52	Nonâ€Preheating Processed Quasiâ€⊋D Perovskites for Efficient and Stable Solar Cells. Small, 2020, 16, e1906997.	5.2	24
53	A surface modifier enhances the performance of the all-inorganic CsPbl ₂ Br perovskite solar cells with efficiencies approaching 15%. Physical Chemistry Chemical Physics, 2020, 22, 17847-17856.	1.3	23
54	A Comparative Study on Hole Transfer Inversely Correlated with Driving Force in Two Non-Fullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4110-4116.	2.1	21

#	Article	IF	CITATIONS
55	Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology, 2022, 33, 072002.	1.3	20
56	Understanding the Passivation Mechanisms and Opto-Electronic Spectral Response in Methylammonium Lead Halide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2018, 10, 35580-35588.	4.0	19
57	A biopolymeric buffer layer improves device efficiency and stability in inverted organic solar cells. Journal of Materials Chemistry C, 2020, 8, 15795-15803.	2.7	18
58	Enhancement of the Photoresponse in Organic Fieldâ€Effect Transistors by Incorporating Thin DNA Layers. Angewandte Chemie - International Edition, 2014, 53, 244-249.	7.2	17
59	Improved electron extraction by a ZnO nanoparticle interlayer for solution-processed polymer solar cells. RSC Advances, 2017, 7, 12400-12406.	1.7	17
60	Effects of processing additives in non-fullerene organic bulk heterojunction solar cells with efficiency >11%. Chinese Chemical Letters, 2019, 30, 217-221.	4.8	17
61	Air-stable formamidinium/methylammonium mixed lead iodide perovskite integral microcrystals with low trap density and high photo-responsivity. Physical Chemistry Chemical Physics, 2019, 21, 3106-3113.	1.3	16
62	The Positive Function of Incorporation of Small Molecules into Perovskite Materials for High‣fficient Stable Solar Cells. Solar Rrl, 2019, 3, 1800327.	3.1	16
63	Sequential molecular doping of non-fullerene organic solar cells without hole transport layers. Journal of Materials Chemistry C, 2020, 8, 158-164.	2.7	16
64	Built-in voltage enhanced by <i>in situ</i> electrochemical polymerized undoped conjugated hole-transporting modifiers in organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2676-2681.	2.7	16
65	Enhanced Photoelectrochemical Detection of Bioaffinity Reactions by Vertically Oriented Au Nanobranches Complexed with a Biotinylated Polythiophene Derivative. Sensors, 2009, 9, 1094-1107.	2.1	15
66	Transformation of Tourism in Beijing after the 2008 Summer Olympics: An Analysis of the Impacts in 2014. International Journal of Tourism Research, 2016, 18, 277-285.	2.1	15
67	Electron Transport and Nanomorphology in Solutionâ€Processed Polymeric Semiconductor nâ€Doped with an Airâ€Stable Organometallic Dimer. Advanced Electronic Materials, 2017, 3, 1600546.	2.6	15
68	Returning ex-patriot Chinese to Guangdong, China, increase the risk for local transmission of Zika virus. Journal of Infection, 2017, 75, 356-367.	1.7	15
69	Highâ€Efficiency and Stable Perovskite Solar Cells Enabled by Lowâ€Dimensional Perovskite Surface Modifiers. Solar Rrl, 2022, 6, .	3.1	15
70	Solutionâ€Based In Situ Synthesis and Fabrication of Ultrasensitive CdSe Photoconductors. Advanced Materials, 2010, 22, 5366-5369.	11.1	14
71	Highâ€Efficient Charge Generation in Singleâ€Donorâ€Componentâ€Based pâ€iâ€n Structure Organic Solar Cells Solar Rrl, 2020, 4, 1900580.	^{5.} 3.1	14
72	Efficient and Stable Quasiâ€2D Perovskite Solar Cells Enabled by Thermalâ€Aged Precursor Solution. Advanced Functional Materials, 2021, 31, 2107675.	7.8	14

#	Article	IF	CITATIONS
73	Light Managements and Transparent Electrodes for Semitransparent Organic and Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	14
74	The intercalation of C60-containing PEO into layered MnPS3. Polymer, 2007, 48, 3256-3261.	1.8	13
75	Understanding the temperature-dependent charge transport, structural variation and photoluminescent properties in methylammonium lead halide perovskite single crystals. Journal of Materials Chemistry C, 2018, 6, 6556-6564.	2.7	13
76	Revealing the Interfacial Photoreduction of MoO ₃ with P3HT from the Molecular Weight-Dependent "Burn-In―Degradation of P3HT:PC ₆₁ BM Solar Cells. ACS Applied Energy Materials, 2020, 3, 9714-9723.	2.5	13
77	Evolutionary and phylodynamic analyses of Dengue virus serotype I in Guangdong Province, China, between 1985 and 2015. Virus Research, 2018, 256, 201-208.	1.1	12
78	The epidemiological characteristics and molecular phylogeny of the dengue virus in Guangdong, China, 2015. Scientific Reports, 2018, 8, 9976.	1.6	11
79	A universal approach for optimizing charge extraction in electron transporting layer-free organic solar cells <i>via</i> Lewis base doping. Journal of Materials Chemistry A, 2019, 7, 25808-25817.	5.2	11
80	Entecavir-associated myopathy: A case report and literature review. Muscle and Nerve, 2014, 49, 610-614.	1.0	10
81	A family cluster of imported ZIKV cases: Viremia period may be longer than previously reported. Journal of Infection, 2016, 73, 300-303.	1.7	10
82	Intercalation of amino acids into layered MnPS3: Synthesis, characterization and magnetic properties. Materials Research Bulletin, 2006, 41, 2161-2167.	2.7	9
83	Synthesis and Luminescent Properties of Two Copolymers Containing Dithienothiophene and Fluorene. Chemistry Letters, 2007, 36, 1206-1207.	0.7	9
84	Improved Electron Transport with Reduced Contact Resistance in Nâ€Đoped Polymer Fieldâ€Effect Transistors with a Dimeric Dopant. Macromolecular Rapid Communications, 2018, 39, e1700726.	2.0	9
85	Retardation of Trapâ€Assisted Recombination in Lead Halide Perovskite Solar Cells by a Dimethylbiguanide Anchor Layer. Chemistry - A European Journal, 2018, 25, 1076-1082.	1.7	9
86	Mediated Non-geminate Recombination in Ternary Organic Solar Cells Through a Liquid Crystal Guest Donor. Frontiers in Chemistry, 2020, 8, 21.	1.8	9
87	An inorganic–organic intercalated nanocomposite, BEDT-TTF into layered MnPS3. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 293-296.	1.6	8
88	Rapid Production of Virus Protein Microarray Using Protein Microarray Fabrication through Gene Synthesis (PAGES). Molecular and Cellular Proteomics, 2017, 16, 288-299.	2.5	8
89	Serologic and behavioral risk survey of workers with wildlife contact in China. PLoS ONE, 2018, 13, e0194647.	1.1	8
90	Fast Field-Insensitive Charge Extraction Enables High Fill Factors in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 38460-38469.	4.0	8

#	Article	IF	CITATIONS
91	Enhanced stability in perovskite solar cells <i>via</i> room-temperature processing. Journal of Materials Chemistry C, 2021, 9, 14749-14756.	2.7	8
92	Strongly Reduced Non-Radiative Voltage Losses in Organic Solar Cells Prepared with Sequential Film Deposition. Journal of Physical Chemistry Letters, 2021, 12, 10663-10670.	2.1	8
93	Synthesis, structure and material properties of thiopyranylidene-based asymmetrical squaraines. Dyes and Pigments, 2018, 154, 137-144.	2.0	7
94	Genomic and biological features of a novel orbivirus isolated from mosquitoes, in China. Virus Research, 2020, 285, 197990.	1.1	7
95	Peculiar Steric Hindrance Assists Monoclinic Phase Formation toward High-Quality All-Inorganic Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 11228-11237.	2.1	7
96	A New Organic-Inorganic Hybrid Nanocomposite, BEDT-TTF Intercalated into Layered FePS3. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 53, 205-209.	1.6	6
97	Interrater reliability and radiation dosage of oblique coronal computed tomography for sacroiliitis in comparison with axial computed tomography. British Journal of Radiology, 2018, 91, 20150700.	1.0	6
98	Ambipolar charge transport in a bis-diketopyrrolopyrrole small molecule semiconductor with tunable energetic disorder. Physical Chemistry Chemical Physics, 2018, 20, 1787-1793.	1.3	6
99	8â€Hydroquinolatolithium as a Highly Effective Solutionâ€Processable Cathode Interfacial Material in Inverted Perovskite Solar Cells with an Efficiency Over 19%. Solar Rrl, 2018, 2, 1800084.	3.1	6
100	Rational Design of 2D p–π Conjugated Polysquaraines for Both Fullerene and Nonfullerene Polymer Solar Cells. Macromolecular Chemistry and Physics, 2020, 221, 1900439.	1.1	6
101	Synthesis and Magnetic Characterization of TTM-TTF intercalated into Lamellar MnPS3. Synthetic Metals, 2005, 152, 485-488.	2.1	5
102	Identification and genetic characterization of Zika virus isolated from an imported case in China. Infection, Genetics and Evolution, 2017, 48, 40-46.	1.0	4
103	Synthesis and characterization of intercalation compounds of stilbazolium chromophores into layered vanadyl phosphate. Journal of Materials Chemistry, 2005, 15, 1637.	6.7	3
104	New Configuration of Solidâ€State Neutron Detector Made Possible with Solutionâ€Based Semiconductor Processing. Advanced Functional Materials, 2012, 22, 3279-3283.	7.8	3
105	The effect of one- or two-dimensional conjugated benzodithiophene in polymeric donors on the device performance of non-fullerene organic solar cells. Dyes and Pigments, 2019, 163, 221-226.	2.0	2
106	Adenosine Triphosphate Disodium Modified Hole Transport Layer for Efficient Inverted Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
107	Community based serosurvey of naÃ ⁻ ve population indicate no local circulation of Zika virus in an hyper endemic area of China 2016. Journal of Infection, 2019, 79, 61-74.	1.7	1
108	Effect of defects on the electronic structure of a PbI2/MoS2 van der Waals heterostructure: A first-principles study. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	1

#	Article	IF	CITATIONS
109	The Role of Ending Groups in Nonâ€Fullerene Acceptors for Interfacial Modification in Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	1
110	Interfacial Molecular Doping at Donor and Acceptor Interface in Bilayer Organic Solar Cells. Solar Rrl, 0, , .	3.1	1
111	Evaluation of a real-time impedance analysis platform on fungal infection. Journal of Microbiological Methods, 2017, 136, 88-93.	0.7	0