Arne Biesiekierski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8197900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titanium alloys. , 2021, , 157-187.		3
2	Development of beta-type Ti-Nb-Zr-Mo alloys for orthopedic applications. Applied Materials Today, 2021, 22, 100968.	2.3	15
3	Surface Characterization and Biocompatibility of Hydroxyapatite Coating on Anodized TiO ₂ Nanotubes via PVD Magnetron Sputtering. Langmuir, 2021, 37, 4984-4996.	1.6	18
4	A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomaterialia, 2021, 130, 80-97.	4.1	65
5	The Application of the Rare Earths to Magnesium and Titanium Metallurgy in Australia. Advanced Materials, 2020, 32, e1901715.	11.1	24
6	Impact of the rare earth elements scandium and yttrium on beta-type Ti-24Nb-38Zr-2Mo-base alloys for orthopedic applications. Materialia, 2020, 9, 100586.	1.3	11
7	Selective laser melting in biomedical manufacturing. , 2020, , 235-269.		19
8	Introduction to biomedical manufacturing. , 2020, , 3-29.		2
9	Material selection for medical devices. , 2020, , 31-94.		8
10	Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti-24Nb-38Zr-2Mo alloy for medical applications. Materialia, 2020, 12, 100772.	1.3	8
11	Titanium Alloys, Including Nitinol. , 2020, , 229-247.		4
12	Effect of Anodized TiO ₂ –Nb ₂ O ₅ –ZrO ₂ Nanotubes with Different Nanoscale Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS Applied Materials & Interfaces, 2020, 12, 6776-6787.	4.0	19
13	Characterization techniques for metallic biomaterials. , 2020, , 517-545.		0
14	Optimized Fabrication and Characterization of TiO ₂ –Nb ₂ O ₅ –ZrO ₂ Nanotubes on β-Phase TiZr ₃₅ Nb ₂₈ Alloy for Biomedical Applications via the Taguchi Method. ACS Biomaterials Science and Engineering, 2019, 5, 2750-2761.	2.6	12
15	Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications. Materialia, 2019, 6, 100323.	1.3	46
16	An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Scientific Reports, 2018, 8, 5737.	1.6	32
17	Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti–Nb–Ru alloys. Acta Biomaterialia, 2017, 48, 461-467.	4.1	17
18	Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Acta Biomaterialia, 2017, 53, 549-558.	4.1	50

Arne Biesiekierski

#	Article	IF	CITATIONS
19	Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications. Acta Biomaterialia, 2016, 32, 336-347.	4.1	61
20	Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications. Materials & Design, 2014, 59, 303-309.	5.1	45
21	A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 2012, 8, 1661-1669.	4.1	519
22	A Brief Review of Biomedical Shape Memory Alloys by Powder Metallurgy. Key Engineering Materials, 0, 520, 195-200.	0.4	4