Eric Agius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8197742/publications.pdf

Version: 2024-02-01

623734 794594 1,942 19 14 19 h-index citations g-index papers 28 28 28 1790 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Single-cell imaging of the cell cycle reveals CDC25B-induced heterogeneity of G1 phase length in neural progenitor cells. Development (Cambridge), 2022, 149 , .	2.5	4
2	Timing the spinal cord development with neural progenitor cells losing their proliferative capacity: a theoretical analysis. Neural Development, 2019, 14, 7.	2.4	4
3	Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase. ELife, 2018, 7, .	6.0	15
4	FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord. Neural Development, 2018, 13, 3.	2.4	16
5	Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell and Tissue Research, 2015, 359, 201-213.	2.9	18
6	The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production. Development (Cambridge), 2012, 139, 1095-1104.	2.5	35
7	The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production. Journal of Cell Science, 2012, 125, e1-e1.	2.0	0
8	Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord. Developmental Biology, 2010, 344, 611-620.	2.0	16
9	Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis. PLoS ONE, 2009, 4, e4900.	2.5	40
10	Pax2 regulates neuronal–glial cell fate choice in the embryonic optic nerve. Developmental Biology, 2007, 303, 800-813.	2.0	40
11	Ventral Neural Progenitors Switch toward an Oligodendroglial Fate in Response to Increased Sonic Hedgehog (Shh) Activity: Involvement of Sulfatase 1 in Modulating Shh Signaling in the Ventral Spinal Cord. Journal of Neuroscience, 2006, 26, 5037-5048.	3.6	108
12	Converse control of oligodendrocyte and astrocyte lineage development by Sonic hedgehog in the chick spinal cord. Developmental Biology, 2004, 270, 308-321.	2.0	73
13	A subtractive approach to characterize genes with regionalized expression in the gliogenic ventral neuroepithelium: identification of chick Sulfatase 1 as a new oligodendrocyte lineage gene. Molecular and Cellular Neurosciences, 2004, 25, 612-628.	2.2	27
14	Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development (Cambridge), 2002, 129, 5117-5130.	2.5	137
15	Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development (Cambridge), 2002, 129, 5117-30.	2.5	60
16	Neural Induction in the Absence of Mesoderm: \hat{l}^2 -Catenin-Dependent Expression of Secreted BMP Antagonists at the Blastula Stage in Xenopus. Developmental Biology, 2001, 234, 161-173.	2.0	119
17	The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature, 1999, 397, 707-710.	27.8	768
18	Comparison of Neurite Outgrowth Induced by Intact and Injured Sciatic Nerves: A Confocal and Functional Analysis. Journal of Neuroscience, 1998, 18, 328-338.	3.6	74

#	Article	IF	CITATIONS
19	Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity. Cell, 1997, 91, 407-416.	28.9	384