
Jakub Godlewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8197275/publications.pdf Version: 2024-02-01

LAKUR CODIEWSKI

#	Article	IF	CITATIONS
1	Oncolytic Virus Therapy Alters the Secretome of Targeted Glioblastoma Cells. Cancers, 2021, 13, 1287.	1.7	8
2	The nuclear DICER–circular RNA complex drives the deregulation of the glioblastoma cell microRNAome. Science Advances, 2020, 6, .	4.7	31
3	Hypoxic Roadmap of Glioblastoma—Learning about Directions and Distances in the Brain Tumor Environment. Cancers, 2020, 12, 1213.	1.7	10
4	The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nature Communications, 2019, 10, 442.	5.8	86
5	MicroRNA-451 Inhibits Migration of Glioblastoma while Making It More Susceptible to Conventional Therapy. Non-coding RNA, 2019, 5, 25.	1.3	22
6	MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer. Non-coding RNA, 2019, 5, 20.	1.3	54
7	Statins affect human glioblastoma and other cancers through TGF-l ² inhibition. Oncotarget, 2019, 10, 1716-1728.	0.8	30
8	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	4.7	416
9	Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro-Oncology, 2018, 20, 192-202.	0.6	52
10	Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Research, 2018, 78, 4360-4369.	0.4	46
11	MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports, 2017, 8, 1497-1505.	2.3	58
12	MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. Cell Reports, 2017, 19, 2026-2032.	2.9	33
13	Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clinical Cancer Research, 2017, 23, 6958-6968.	3.2	74
14	CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget, 2017, 8, 55319-55331.	0.8	39
15	CBIO-12. SIX EXTRACELLULAR VESICLE RELATED GENES CAN EXPLAIN THE PRO-TUMORIGENIC BEHAVIOR OF HETEROGENEOUS HIGH GRADE GLIOMAS. Neuro-Oncology, 2016, 18, vi37-vi37.	0.6	0
16	Therapeutic potential of targeting micro <scp>RNA</scp> â€10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Molecular Medicine, 2016, 8, 268-287.	3.3	117
17	Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Research, 2016, 76, 2876-2881.	0.4	85
18	The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Reports, 2016, 15, 2500-2509.	2.9	156

Jakub Godlewski

#	Article	IF	CITATIONS
19	The role of octamer binding transcription factors in glioblastoma multiforme. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 805-811.	0.9	13
20	Extracellular Vesicles and MicroRNAs: Their Role in Tumorigenicity and Therapy for Brain Tumors. Cellular and Molecular Neurobiology, 2016, 36, 361-376.	1.7	36
21	MicroRNA and extracellular vesicles in glioblastoma: small but powerful. Brain Tumor Pathology, 2016, 33, 77-88.	1.1	47
22	Mapping of the Sequences Directing Localization of the Drosophila Germ Cell-Expressed Protein (GCE). PLoS ONE, 2015, 10, e0133307.	1.1	12
23	Glucose-Based Regulation of miR-451/AMPK Signaling Depends on the OCT1 Transcription Factor. Cell Reports, 2015, 11, 902-909.	2.9	50
24	Belonging to a network—microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro-Oncology, 2015, 17, 652-662.	0.6	78
25	Response to energy depletion: miR-451/AMPK loop. Oncotarget, 2015, 6, 17851-17852.	0.8	7
26	Extracellular Vesicles Modulate the Glioblastoma Microenvironment via a Tumor Suppression Signaling Network Directed by miR-1. Cancer Research, 2014, 74, 738-750.	0.4	197
27	MicroRNA-451 Regulates LKB1/AMPK Signaling and Allows Adaptation to Metabolic Stress in Glioma Cells. Molecular Cell, 2010, 37, 620-632.	4.5	382
28	Targeting of the Bmi-1 Oncogene/Stem Cell Renewal Factor by MicroRNA-128 Inhibits Glioma Proliferation and Self-Renewal. Cancer Research, 2008, 68, 9125-9130.	0.4	670