
Claire Mayer-Laigle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8196711/publications.pdf Version: 2024-02-01

CLAIPE MAYER-LAICLE

#	Article	IF	CITATIONS
1	Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Advances, 2014, 4, 48109-48127.	3.6	180
2	Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Industrial Crops and Products, 2019, 135, 246-250.	5.2	52
3	Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Frontiers in Chemistry, 2019, 7, 735.	3.6	47
4	Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour. Bioengineering, 2018, 5, 41.	3.5	45
5	Comminution of Dry Lignocellulosic Biomass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. Bioengineering, 2018, 5, 50.	3.5	43
6	Mixing dynamics for easy flowing powders in a lab scale Turbula ® mixer. Chemical Engineering Research and Design, 2015, 95, 248-261.	5.6	29
7	Dry fractionation of olive pomace as a sustainable process to produce fillers for biocomposites. Powder Technology, 2018, 326, 44-53.	4.2	29
8	The potential of flax shives as reinforcements for injection moulded polypropylene composites. Industrial Crops and Products, 2020, 148, 112324.	5.2	27
9	Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 12-21.	7.6	26
10	DRY biorefineries: Multiscale modeling studies and innovative processing. Innovative Food Science and Emerging Technologies, 2018, 46, 131-139.	5.6	21
11	Douglas bark dry fractionation for polyphenols isolation: From forestry waste to added value products. Industrial Crops and Products, 2016, 86, 12-15.	5.2	18
12	Evolution of grinding energy and particle size during dry ball-milling of silica sand. Powder Technology, 2020, 376, 661-667.	4.2	18
13	Elastic properties of packing of granulated cork: Effect of particle size. Industrial Crops and Products, 2017, 99, 126-134.	5.2	16
14	Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders. Energy, 2021, 227, 120508.	8.8	15
15	Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibres. Powder Technology, 2020, 360, 129-140.	4.2	12
16	Fine Comminution of Pine Bark: How Does Mechanical Loading Influence Particles Properties and Milling Efficiency?. Bioengineering, 2019, 6, 102.	3.5	11
17	About the frontier between filling and reinforcement by fine flax particles in plant fibre composites. Industrial Crops and Products, 2019, 141, 111774.	5.2	10
18	Milling itineraries dataset for a collection of crop and wood by-products and granulometric properties of the resulting powders. Data in Brief, 2020, 33, 106430.	1.0	10

CLAIRE MAYER-LAIGLE

#	Article	IF	CITATIONS
19	Mineral–vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles. Bioresource Technology, 2015, 192, 703-710.	9.6	7
20	Grape stalk: a first attempt to disentangle its fibres via electrostatic separation. Food and Bioproducts Processing, 2020, 124, 455-468.	3.6	7
21	Flax shives-PBAT processing into 3D printed fluorescent materials with potential sensor functionalities. Industrial Crops and Products, 2021, 167, 113482.	5.2	6
22	Scale-up in Turbula® mixers based on the principle of similarities. Particulate Science and Technology, 2020, 38, 973-984.	2.1	4
23	Breakage of flawed particles by peridynamic simulations. Computational Particle Mechanics, 0, , 1.	3.0	4
24	Preserving the Cellular Tissue Structure of Maize Pith Though Dry Fractionation Processes: A Key Point to Use as Insulating Agro-Materials. Materials, 2021, 14, 5350.	2.9	4
25	A 2D autocorrelation method for assessing mixture homogeneity as applied to bipolar plates in fuel cell technology. Advanced Powder Technology, 2011, 22, 167-173.	4.1	2
26	Electrostatic separation of mineral and vegetal powders with a custom built corona separator: application to biorefinery of rice husk. EPJ Web of Conferences, 2017, 140, 13020.	0.3	2
27	Peridynamics simulation of the comminution of particles containing microcraks. EPJ Web of Conferences, 2017, 140, 07018.	0.3	2
28	Determinant morphological features of flax plant products and their contribution in injection moulded composite reinforcement. Composites Part C: Open Access, 2020, 3, 100054.	3.2	2
29	Study of two-stage-type electrostatic precipitator in axisymmetric configuration applied to finely ground lignocellulosic materials. , 2017, , .		1
30	Deconvolution of grading curves during milling: example of wheat straw. EPJ Web of Conferences, 2017, 140, 13019.	0.3	1
31	Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up. Open Research Europe, 0, 1, 125.	2.0	1
32	Friability of Maize Shoot (Zea mays L.) in Relation to Cell Wall Composition and Physical Properties. Agriculture (Switzerland), 2022, 12, 951.	3.1	1
33	An innovative device for powders classification based on combined aerodynamic and electrostatic separation of particles. EPJ Web of Conferences, 2017, 140, 16005.	0.3	0
34	Study of Two-Stage-Type Electrostatic Precipitator in Axisymmetric Configuration Applied to Finely Ground Lignocellulosic Materials. IEEE Transactions on Industry Applications, 2019, 55, 3114-3121.	4.9	0
35	Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up. Open Research Europe, 0, 1, 125.	2.0	0