
Stephen F Altschul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8196355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	eCOMPASS: evaluative comparison of multiple protein alignments by statistical score. Bioinformatics, 2021, 37, 3456-3463.	4.1	0
2	Deep Analysis of Residue Constraints (DARC): identifying determinants of protein functional specificity. Scientific Reports, 2020, 10, 1691.	3.3	12
3	Initial Cluster Analysis. Journal of Computational Biology, 2018, 25, 121-129.	1.6	7
4	Statistical investigations of protein residue direct couplings. PLoS Computational Biology, 2018, 14, e1006237.	3.2	8
5	Inferring joint sequence-structural determinants of protein functional specificity. ELife, 2018, 7, .	6.0	14
6	Outlier detection in BLAST hits. Algorithms for Molecular Biology, 2018, 13, 7.	1.2	14
7	Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations. PLoS Computational Biology, 2016, 12, e1005294.	3.2	9
8	Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties. PLoS Computational Biology, 2016, 12, e1004936.	3.2	17
9	Log-odds sequence logos. Bioinformatics, 2015, 31, 324-331.	4.1	14
10	The anatomy of successful computational biology software. Nature Biotechnology, 2013, 31, 894-897.	17.5	25
11	Dirichlet Mixtures, the Dirichlet Process, and the Structure of Protein Space. Journal of Computational Biology, 2013, 20, 1-18.	1.6	27
12	Domain enhanced lookup time accelerated BLAST. Biology Direct, 2012, 7, 12.	4.6	705
13	The Complexity of the Dirichlet Model for Multiple Alignment Data. Journal of Computational Biology, 2011, 18, 925-939.	1.6	3
14	On the Inference of Dirichlet Mixture Priors for Protein Sequence Comparison. Journal of Computational Biology, 2011, 18, 941-954.	1.6	5
15	The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment. PLoS Computational Biology, 2010, 6, e1000852.	3.2	58
16	Compositional Adjustment of Dirichlet Mixture Priors. Journal of Computational Biology, 2010, 17, 1607-1620.	1.6	9
17	PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Research, 2009, 37, 815-824.	14.5	120
18	Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biology, 2006, 4, 41.	3.8	420

STEPHEN F ALTSCHUL

#	Article	IF	CITATIONS
19	Retrieval accuracy, statistical significance and compositional similarity in protein sequence database searches. Nucleic Acids Research, 2006, 34, 5966-5973.	14.5	53
20	Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 2005, 272, 5101-5109.	4.7	881
21	Expression of a recombinant IRP-like Plasmodium falciparum protein that specifically binds putative plasmodial IREs. Molecular and Biochemical Parasitology, 2003, 126, 231-238.	1.1	31
22	The compositional adjustment of amino acid substitution matrices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15688-15693.	7.1	79
23	Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16899-16903.	7.1	1,610
24	SAGEmap: A Public Gene Expression Resource. Genome Research, 2000, 10, 1051-1060.	5.5	367
25	Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends in Biochemical Sciences, 1998, 23, 444-447.	7.5	674
26	Generalized affine gap costs for protein sequence alignment. Proteins: Structure, Function and Bioinformatics, 1998, 32, 88-96.	2.6	67
27	Characterization of Gene Expression in Resting and Activated Mast Cells. Journal of Experimental Medicine, 1998, 188, 1657-1668.	8.5	105
28	A superfamily of conserved domains in DNA damage―responsive cell cycle checkpoint proteins. FASEB Journal, 1997, 11, 68-76.	0.5	684
29	[27] Local alignment statistics. Methods in Enzymology, 1996, 266, 460-480.	1.0	609
30	…Functional motifs…. Nature Genetics, 1996, 13, 266-268.	21.4	362
31	Eukaryotic translation elongation factor 1γ contains a glutathione transferase domain—Study of a diverse, ancient protein super family using motif search and structural modeling. Protein Science, 1994, 3, 2045-2055.	7.6	140
32	Issues in searching molecular sequence databases. Nature Genetics, 1994, 6, 119-129.	21.4	770
33	A protein alignment scoring system sensitive at all evolutionary distances. Journal of Molecular Evolution, 1993, 36, 290-300.	1.8	139
34	Identification of FAP Locus Genes from Chromosome 5q21. Science, 1991, 253, 661-665.	12.6	2,257
35	Amino acid substitution matrices from an information theoretic perspective. Journal of Molecular Biology, 1991, 219, 555-565.	4.2	538
36	A workbench for multiple alignment construction and analysis. Proteins: Structure, Function and Bioinformatics, 1991, 9, 180-190.	2.6	1,012

STEPHEN F ALTSCHUL

#	Article	IF	CITATIONS
37	Equal animals. Nature, 1990, 348, 493-494.	27.8	37
38	Basic local alignment search tool. Journal of Molecular Biology, 1990, 215, 403-410.	4.2	82,180
39	Gap costs for multiple sequence alignment. Journal of Theoretical Biology, 1989, 138, 297-309.	1.7	112
40	Weights for data related by a tree. Journal of Molecular Biology, 1989, 207, 647-653.	4.2	157
41	Trees, Stars, and Multiple Biological Sequence Alignment. SIAM Journal on Applied Mathematics, 1989, 49, 197-209.	1.8	129
42	Leaf Pairs and Tree Dissections. SIAM Journal on Discrete Mathematics, 1989, 2, 293-299.	0.8	6
43	Significance levels for biological sequence comparison using non-linear similarity functions. Bulletin of Mathematical Biology, 1988, 50, 77-92.	1.9	17
44	Optimal sequence alignment using affine gap costs. Bulletin of Mathematical Biology, 1986, 48, 603-616.	1.9	166
45	A nonlinear measure of subalignment similarity and its significance levels. Bulletin of Mathematical Biology, 1986, 48, 617-632.	1.9	50
46	Locally optimal subalignments using nonlinear similarity functions. Bulletin of Mathematical Biology, 1986, 48, 633-660.	1.9	34