Guohui Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/819572/publications.pdf

Version: 2024-02-01

759233 677142 22 797 12 22 citations h-index g-index papers 22 22 22 923 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	The Role of Non-Coding RNAs in the Pathogenesis of Parkinson's Disease: Recent Advancement. Pharmaceuticals, 2022, 15, 811.	3.8	14
2	The Efficacy and Predictors of Using GPi-DBS to Treat Early-Onset Dystonia: An Individual Patient Analysis. Neural Plasticity, 2021, 2021, 1-12.	2.2	4
3	Genetic Imaging of Neuroinflammation in Parkinson's Disease: Recent Advancements. Frontiers in Cell and Developmental Biology, 2021, 9, 655819.	3.7	15
4	Wakefulness-Promoting Effects of Lateral Hypothalamic Area–Deep Brain Stimulation in Traumatic Brain Injury-Induced Comatose Rats: Upregulation of α1-Adrenoceptor Subtypes and Downregulation of Gamma-Aminobutyric Acid β Receptor Expression Via the Orexins Pathway. World Neurosurgery, 2021, 152, e321-e331.	1.3	7
5	Levodopa Challenge Test Predicts STN-DBS Outcomes in Various Parkinson's Disease Motor Subtypes: A More Accurate Judgment. Neural Plasticity, 2021, 2021, 1-10.	2.2	6
6	Triggering Receptor Expressed on Myeloid Cells 2 Protects Dopaminergic Neurons by Promoting Autophagy in the Inflammatory Pathogenesis of Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 745815.	2.8	9
7	Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Frontiers in Human Neuroscience, 2021, 15, 757579.	2.0	21
8	Outcomes and Adverse Effects of Deep Brain Stimulation on the Ventral Intermediate Nucleus in Patients with Essential Tremor. Neural Plasticity, 2020, 2020, 1-13.	2.2	20
9	Selection and Prognosis of Optic Canal Decompression for Traumatic Optic Neuropathy. World Neurosurgery, 2020, 138, e564-e578.	1.3	11
10	Predictive factors of outcome in cervical dystonia following deep brain stimulation: an individual patient data meta-analysis. Journal of Neurology, 2020, 267, 1780-1792.	3. 6	7
11	Identification of gene co-expression modules and hub genes associated with the invasiveness of pituitary adenoma. Endocrine, 2020, 68, 377-389.	2.3	4
12	miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson's disease. Biochemical and Biophysical Research Communications, 2019, 519, 740-746.	2.1	39
13	MicroRNAâ€124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease. FASEB Journal, 2019, 33, 8648-8665.	0.5	92
14	Is awake physiological confirmation necessary for DBS treatment of Parkinson's disease today? A comparison of intraoperative imaging, physiology, and physiology imaging-guided DBS in the past decade. Brain Stimulation, 2019, 12, 893-900.	1.6	21
15	miR-137 functions as a tumor suppressor gene in pituitary adenoma by targeting AKT2. International Journal of Clinical and Experimental Pathology, 2019, 12, 1557-1564.	0.5	12
16	Long-noncoding RNA IFNG-AS1 exerts oncogenic properties by interacting with epithelial splicing regulatory protein 2 (ESRP2) in pituitary adenomas. Pathology Research and Practice, 2018, 214, 2054-2061.	2.3	17
17	miR-497/Wnt3a/c-jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells. International Journal of Biological Macromolecules, 2018, 120, 985-991.	7.5	16
18	A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation. Cell Death and Disease, 2018, 9, 803.	6.3	72

#	Article	IF	CITATIONS
19	MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson's disease. Journal of Neuroinflammation, 2018, 15, 13.	7.2	96
20	Persistent adverse effects following different targets and periods after bilateral deep brain stimulation in patients with Parkinson's disease. Journal of the Neurological Sciences, 2018, 393, 116-127.	0.6	21
21	Analysis of cancer-related IncRNAs using gene ontology and KEGG pathways. Artificial Intelligence in Medicine, 2017, 76, 27-36.	6.5	136
22	<scp>MiR</scp> â€124 Regulates Apoptosis and Autophagy Process in <scp>MPTP</scp> Model of <scp>P</scp> arkinson's Disease by Targeting to <scp>B</scp> im. Brain Pathology, 2016, 26, 167-176.	4.1	157