Dingzhi Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8195236/publications.pdf Version: 2024-02-01

DINCZHI PENC

#	Article	IF	CITATIONS
1	Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment, 2019, 659, 940-949.	3.9	163
2	A reservoir flood forecasting and control system for China / Un système chinois de prévision et de contrÃ1e de crue en barrage. Hydrological Sciences Journal, 2004, 49, .	1.2	72
3	Urban flood susceptibility assessment based on convolutional neural networks. Journal of Hydrology, 2020, 590, 125235.	2.3	67
4	Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis. Hydrological Processes, 2015, 29, 1942-1955.	1.1	58
5	Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data. Agricultural Water Management, 2019, 222, 125-138.	2.4	51
6	A modified Xinanjiang model and its application in northern China. Hydrology Research, 2005, 36, 175-192.	1.1	48
7	Reservoir Storage Curve Estimation Based on Remote Sensing Data. Journal of Hydrologic Engineering - ASCE, 2006, 11, 165-172.	0.8	44
8	Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. Journal of Hydrology, 2021, 600, 126532.	2.3	43
9	Study of Dongting Lake area variation and its influence on water level using MODIS data / Etude de la variation de la surface du Lac Dongting et de son influence sur le niveau d'eau, grâce à des données MODIS. Hydrological Sciences Journal, 2005, 50, .	1.2	39
10	Net anthropogenic nitrogen and phosphorus inputs in the Yangtze River economic belt: spatiotemporal dynamics, attribution analysis, and diversity management. Journal of Hydrology, 2021, 597, 126221.	2.3	33
11	Seawater desalination in China: an overview. Journal of Water Reuse and Desalination, 2019, 9, 115-132.	1.2	32
12	Identification of the impacts of climate changes and human activities on runoff in the upper and middle reaches of the Heihe River basin, China. Journal of Water and Climate Change, 2016, 7, 251-262.	1.2	29
13	Improving urban flood susceptibility mapping using transfer learning. Journal of Hydrology, 2021, 602, 126777.	2.3	26
14	Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. Journal of Hydrology: Regional Studies, 2022, 41, 101064.	1.0	26
15	A data-driven framework for spatiotemporal characteristics, complexity dynamics, and environmental risk evaluation of river water quality. Science of the Total Environment, 2021, 785, 147134.	3.9	25
16	Statistical analysis of error propagation from radar rainfall to hydrological models. Hydrology and Earth System Sciences, 2013, 17, 1445-1453.	1.9	24
17	Assessing effects of non-point source pollution emission control schemes on Beijing's sub-center with a water environment model. Urban Climate, 2022, 43, 101148.	2.4	22
18	Dependence of Sediment Suspension Viscosity on Solid Concentration: A Simple General Equation. Water (Switzerland), 2017, 9, 474.	1.2	19

Dingzhi Peng

#	Article	IF	CITATIONS
19	Simulating the Impact of climate change on streamflow in the Tarim River basin by using a modified semiâ€distributed monthly water balance model. Hydrological Processes, 2010, 24, 209-216.	1.1	18
20	Simulation of snowmelt runoff in ungauged basins based on MODIS: a case study in the Lhasa River basin. Stochastic Environmental Research and Risk Assessment, 2014, 28, 1577-1585.	1.9	17
21	Quantification of Climate Changes and Human Activities That Impact Runoff in the Taihu Lake Basin, China. Mathematical Problems in Engineering, 2016, 2016, 1-7.	0.6	17
22	Modelling the coupling evolution of the water environment and social economic system using PSO-SVM in the Yangtze River Economic Belt, China. Ecological Indicators, 2021, 129, 108012.	2.6	16
23	Assessment and Correction of the PERSIANN-CDR Product in the Yarlung Zangbo River Basin, China. Remote Sensing, 2018, 10, 2031.	1.8	15
24	Simulation of Summer Hourly Stream Flow by Applying TOPMODEL and Two Routing Algorithms to the Sparsely Gauged Lhasa River Basin in China. Water (Switzerland), 2015, 7, 4041-4053.	1.2	14
25	Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study. Water Science and Technology, 2018, 77, 861-870.	1.2	14
26	Influences of the North Atlantic Oscillation on extreme temperature during the cold period in China. International Journal of Climatology, 2019, 39, 43-49.	1.5	13
27	Uncertainty Assessment of Urban Hydrological Modelling from a Multiple Objective Perspective. Water (Switzerland), 2020, 12, 1393.	1.2	13
28	Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy, 2019, 21, 55.	1.1	11
29	Spatio-Temporal Patterns of Vegetation in the Yarlung Zangbo River, China during 1998–2014. Sustainability, 2019, 11, 4334.	1.6	9
30	Atmospheric–hydrological modeling for Beijing's sub-center based on WRF and SWMM. Urban Climate, 2022, 41, 101066.	2.4	7
31	Evaluation of Performance of Three Satellite-Derived Precipitation Products in Capturing Extreme Precipitation Events over Beijing, China. Remote Sensing, 2022, 14, 2698.	1.8	7
32	Comparative Analysis of Several Lhasa River Basin Flood Forecast Models in Yarlung Zangbo River. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	6
33	Identification of the Impacts of Climate Changes and Human Activities on Runoff in the Jinsha River Basin, China. Advances in Meteorology, 2017, 2017, 1-9.	0.6	6
34	Distributed rainfallâ€runoff simulation for an unclosed river basin with complex river system: a case study of lower reach of the <scp>W</scp> ei <scp>R</scp> iver, <scp>C</scp> hina. Journal of Flood Risk Management, 2016, 9, 169-177.	1.6	5
35	An Expression for Velocity Lag in Sediment-Laden Open-Channel Flows Based on Tsallis Entropy Together with the Principle of Maximum Entropy. Entropy, 2019, 21, 522.	1.1	5
36	Comparison of Conventional Deterministic and Entropy-Based Methods for Predicting Sediment Concentration in Debris Flow. Water (Switzerland), 2019, 11, 439.	1.2	5

Dingzhi Peng

#	Article	IF	CITATIONS
37	Assessing the Sensitivity of Vegetation Cover to Climate Change in the Yarlung Zangbo River Basin Using Machine Learning Algorithms. Remote Sensing, 2022, 14, 1556.	1.8	5
38	Diagnosis of evapotranspiration controlling factors in the Heihe River basin, northwest China. Hydrology Research, 2018, 49, 1292-1303.	1.1	4
39	Using Shannon entropy to model turbulence-induced flocculation of cohesive sediment in water. Environmental Science and Pollution Research, 2019, 26, 959-974.	2.7	4
40	Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest. Water (Switzerland), 2020, 12, 1433.	1.2	4
41	Estimating the instability criterion of vehicles in urban flooding by an entropic method. Urban Climate, 2022, 41, 101069.	2.4	3
42	Daily precipitation dataset at 0.1° for the Yarlung Zangbo River basin from 2001 to 2015. Scientific Data, 2022, 9, .	2.4	3
43	Impact of urbanization on variability of annual and flood season precipitation in a typical city of North China. Hydrology Research, 2020, 51, 1150-1169.	1.1	2
44	Evaluating Different Methods for Determining the Velocity-Dip Position over the Entire Cross Section and at the Centerline of a Rectangular Open Channel. Entropy, 2020, 22, 605.	1.1	1
45	Notice of Retraction: Comparison of the hydrological models in the Upper Medway Catchment, UK. , 2010, , .		0
46	Preface: Innovative Water Resources Management in a Changing Environment – Understanding and Balancing Interactions between Humankind and Nature. Proceedings of the International Association of Hydrological Sciences, 0, 379, 463-464.	1.0	0