Andrew D Maynard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8194750/publications.pdf Version: 2024-02-01

	70961	3	32761
15,247	41		100
citations	h-index		g-index
127	127		13546
docs citations	times ranked		citing authors
	15,247 citations 127 locs citations	15,247 citations 127 locs citations 127 times ranked	15,247 citations 127 locs citations 127 times ranked

#	Article	IF	CITATIONS
1	Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 2008, 3, 423-428.	15.6	2,349
2	Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2005, 2, 8.	2.8	1,678
3	Safe handling of nanotechnology. Nature, 2006, 444, 267-269.	13.7	1,352
4	Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L698-L708.	1.3	1,144
5	Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 1909-1926.	1.1	1,104
6	Translocation of Inhaled Ultrafine Manganese Oxide Particles to the CentralNervous System. Environmental Health Perspectives, 2006, 114, 1172-1178.	2.8	968
7	Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single-Walled Carbon Nanotube Material. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 87-107.	1.1	675
8	Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L552-L565.	1.3	562
9	Airborne Nanostructured Particles and Occupational Health. Journal of Nanoparticle Research, 2005, 7, 587-614.	0.8	464
10	Research Strategies for Safety Evaluation of Nanomaterials, Part IV: Risk Assessment of Nanoparticles. Toxicological Sciences, 2006, 89, 42-50.	1.4	421
11	The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond. Toxicological Sciences, 2011, 120, S109-S129.	1.4	287
12	Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology, 2007, 1, 26-41.	1.6	235
13	Nanotechnology: The Next Big Thing, or Much Ado about Nothing?. Annals of Occupational Hygiene, 2006, 51, 1-12.	1.9	231
14	Nanotechnology: assessing the risks. Nano Today, 2006, 1, 22-33.	6.2	193
15	Navigating the fourth industrial revolution. Nature Nanotechnology, 2015, 10, 1005-1006.	15.6	173
16	Don't define nanomaterials. Nature, 2011, 475, 31-31.	13.7	158
17	A Survey of Wind Speeds in Indoor Workplaces. Annals of Occupational Hygiene, 1998, 42, 303-313.	1.9	134
18	Late lessons from early warnings for nanotechnology. Nature Nanotechnology, 2008, 3, 444-447.	15.6	132

#	Article	IF	CITATIONS
19	Rapid Kinetics of Size and pH-Dependent Dissolution and Aggregation of Silver Nanoparticles in Simulated Gastric Fluid. Journal of Physical Chemistry C, 2015, 119, 20632-20641.	1.5	120
20	Exposure Assessment Approaches for Engineered Nanomaterials. Risk Analysis, 2010, 30, 1634-1644.	1.5	108
21	Health risk assessment for nanoparticles: A case for using expert judgment. Journal of Nanoparticle Research, 2006, 9, 137-156.	0.8	98
22	Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging. Journal of Aerosol Science, 2005, 36, 1108-1124.	1.8	96
23	A Strategy for Assessing Workplace Exposures to Nanomaterials. Journal of Occupational and Environmental Hygiene, 2011, 8, 673-685.	0.4	93
24	The Mapping of Fine and Ultrafine Particle Concentrations in an Engine Machining and Assembly Facility. Annals of Occupational Hygiene, 2005, 50, 249-57.	1.9	90
25	Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology, 2016, 10, 513-520.	1.6	88
26	AEROSOL INHALABILITY IN LOW AIR MOVEMENT ENVIRONMENTS. Journal of Aerosol Science, 1999, 30, 613-626.	1.8	82
27	THE SAMPLING EFFICIENCY OF PERSONAL INHALABLE AEROSOL SAMPLERS IN LOW AIR MOVEMENT ENVIRONMENTS. Journal of Aerosol Science, 1999, 30, 627-638.	1.8	81
28	Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts. Journal of Nanoparticle Research, 2006, 9, 23-38.	0.8	77
29	Relationships Among Particle Number, Surface Area, and Respirable Mass Concentrations in Automotive Engine Manufacturing. Journal of Occupational and Environmental Hygiene, 2008, 6, 19-31.	0.4	73
30	Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles. Environmental Health Perspectives, 2008, 116, 863-866.	2.8	70
31	Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology, 2016, 10, 352-360.	1.6	65
32	A derived association between ambient aerosol surface area and excess mortality using historic time series data. Atmospheric Environment, 2002, 36, 5561-5567.	1.9	63
33	Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. Journal of Aerosol Science, 2006, 37, 452-470.	1.8	62
34	In situstructure characterization of airborne carbon nanofibres by a tandem mobility–mass analysis. Nanotechnology, 2006, 17, 3613-3621.	1.3	61
35	Protein corona-induced modification of silver nanoparticle aggregation in simulated gastric fluid. Environmental Science: Nano, 2016, 3, 1510-1520.	2.2	59
36	Performance assessment of three personal cyclone models, using an Aerodynamic Particle Sizer. Journal of Aerosol Science, 1995, 26, 671-684.	1.8	57

#	Article	IF	CITATIONS
37	Investigation of the Aerosols Produced by a High-speed, Hand-held Grinder Using Various Substrates. Annals of Occupational Hygiene, 2002, 46, 663-72.	1.9	57
38	'Safe handling of nanotechnology' ten years on. Nature Nanotechnology, 2016, 11, 998-1000.	15.6	53
39	Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science. Journal of Physics: Conference Series, 2015, 617, 012026.	0.3	50
40	Estimating Aerosol Surface Area from Number and Mass Concentration Measurements. Annals of Occupational Hygiene, 2003, 47, 123-44.	1.9	46
41	Development of a Personal Sampler for Collecting Fungal Spores. Aerosol Science and Technology, 2004, 38, 926-937.	1.5	40
42	Women's personal and indoor exposures to PM2.5 in Mysore, India: Impact of domestic fuel usage. Atmospheric Environment, 2005, 39, 5500-5508.	1.9	40
43	Laboratory and Field Evaluation of a New Personal Sampling System for Assessing the Protection Provided by the N95 Filtering Facepiece Respirators against Particles. Annals of Occupational Hygiene, 2005, 49, 245-57.	1.9	40
44	Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. Journal of Nanoparticle Research, 2006, 9, 85-92.	0.8	39
45	A critical analysis of the environmental dossiers from the OECD sponsorship programme for the testing of manufactured nanomaterials. Environmental Science: Nano, 2017, 4, 282-291.	2.2	38
46	Too small to overlook. Nature, 2009, 460, 174-174.	13.7	36
47	The Development of a New Thermophoretic Precipitator for Scanning Transmission Electron Microscope Analysis of Ultrafine Aerosol Particles. Aerosol Science and Technology, 1995, 23, 521-533.	1.5	33
48	Overview of methods for analysing single ultrafine particles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2593-2610.	1.6	32
49	Fine particle number and mass concentration measurements in urban Indian households. Science of the Total Environment, 2005, 347, 131-147.	3.9	32
50	Nanotechnology: Rhetoric, risk and regulation. Science and Public Policy, 2014, 41, 1-14.	1.2	31
51	State of knowledge on the occupational exposure to carbon nanotubes. International Journal of Hygiene and Environmental Health, 2020, 225, 113472.	2.1	31
52	Nanotechnology and occupational health: New technologies – new challenges. Journal of Nanoparticle Research, 2006, 9, 1-3.	0.8	28
53	The problem of regulating sophisticated materials. Nature Materials, 2011, 10, 554-557.	13.3	27
54	Are assumptions of consumer views impeding nano-based water treatment technologies?. Nature Nanotechnology, 2018, 13, 673-674.	15.6	27

#	Article	IF	CITATIONS
55	Measurement of aerosol penetration through six personal thoracic samplers under calm air conditions. Journal of Aerosol Science, 1999, 30, 1227-1242.	1.8	26
56	A SIMPLE MODEL OF AXIAL FLOW CYCLONE PERFORMANCE UNDER LAMINAR FLOW CONDITIONS. Journal of Aerosol Science, 2000, 31, 151-167.	1.8	25
57	The psychology of â€~regrettable substitutions': examining consumer judgements of Bisphenol A and its alternatives. Health, Risk and Society, 2014, 16, 649-666.	0.9	23
58	A decade of uncertainty. Nature Nanotechnology, 2014, 9, 159-160.	15.6	23
59	Old materials, new challenges?. Nature Nanotechnology, 2014, 9, 658-659.	15.6	23
60	Exposure to Power-Frequency Magnetic Fields and the Risk of Infertility and Adverse Pregnancy Outcomes: Update on the Human Evidence and Recommendations for Future Study Designs. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2016, 19, 29-45.	2.9	23
61	Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. Journal of Electrostatics, 2007, 65, 542-548.	1.0	22
62	Nano Risk Analysis: Advancing the Science for Nanomaterials Risk Management. Risk Analysis, 2010, 30, 1680-1687.	1.5	22
63	Recommendations for Nanomedicine Human Subjects Research Oversight: An Evolutionary Approach for an Emerging Field. Journal of Law, Medicine and Ethics, 2012, 40, 716-750.	0.4	22
64	Examining Elemental Surface Enrichment in Ultrafine Aerosol Particles Using Analytical Scanning Transmission Electron Microscopy. Aerosol Science and Technology, 2004, 38, 365-381.	1.5	21
65	Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles. Atmospheric Environment, 2009, 43, 502-509.	1.9	19
66	Measurement of short-term exposure to airborne soluble platinum in the platinum industry. Annals of Occupational Hygiene, 1997, 41, 77-94.	1.9	18
67	A "solution-focused―comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus. Environment Systems and Decisions, 2018, 38, 177-197.	1.9	18
68	The application of electron energy-loss spectroscopy to the analysis of ultrafine aerosol particles. Journal of Aerosol Science, 1995, 26, 757-777.	1.8	16
69	The (nano) entrepreneur's dilemma. Nature Nanotechnology, 2015, 10, 199-200.	15.6	16
70	Public perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact, 2020, 18, 100220.	2.4	15
71	Health risk assessment for nanoparticles: A case for using expert judgment. , 2006, , 137-156.		14
72	Development of a system to rapidly measure sampler penetration up to 20 μm aerodynamic diameter in calm air, using the aerodynamic particle sizer. Journal of Aerosol Science, 1999, 30, 1215-1226.	1.8	13

6

#	Article	IF	CITATIONS
73	Why we need risk innovation. Nature Nanotechnology, 2015, 10, 730-731.	15.6	13
74	Survey of industrial perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact, 2021, 22, 100320.	2.4	13
75	How to Succeed as an Academic on YouTube. Frontiers in Communication, 2021, 5, .	0.6	12
76	Nanoparticles – one word: A multiplicity of different hazards. Nanotoxicology, 2009, 3, 263-264.	1.6	11
77	Thoracic Size-selection of Fibres: Dependence of Penetration on Fibre Length for Five Thoracic Sampler Types. Annals of Occupational Hygiene, 2002, 46, 511-22.	1.9	10
78	Development and Validation of a Simple Numerical Model for Estimating Workplace Aerosol Size Distribution Evolution Through Coagulation, Settling, and Diffusion. Aerosol Science and Technology, 2003, 37, 804-817.	1.5	10
79	Thoracic Size-Selective Sampling of Fibres: Performance of Four Types of Thoracic Sampler in Laboratory Tests. Annals of Occupational Hygiene, 2005, 49, 481-92.	1.9	10
80	Is novelty overrated?. Nature Nanotechnology, 2014, 9, 409-410.	15.6	10
81	Are we ready for spray-on carbon nanotubes?. Nature Nanotechnology, 2016, 11, 490-491.	15.6	10
82	The Ethical and Responsible Development and Application of Advanced Brain Machine Interfaces. Journal of Medical Internet Research, 2019, 21, e16321.	2.1	10
83	Electron energy loss spectroscopy of ultrafine aerosol particles in the scanning transmission electron microscope. Journal of Aerosol Science, 1992, 23, 433-436.	1.8	9
84	Evaluation of Misting Controls to Reduce Respirable Silica Exposure for Brick Cutting. Annals of Occupational Hygiene, 2005, 49, 503-10.	1.9	9
85	Could we 3D print an artificial mind?. Nature Nanotechnology, 2014, 9, 955-956.	15.6	9
86	Handling Worker and Third-Party Exposures to Nanotherapeutics During Clinical Trials. Journal of Law, Medicine and Ethics, 2012, 40, 856-864.	0.4	7
87	Nanotechnologies: Overview and Issues. , 2007, , 1-14.		7
88	36 P 06 Respirable dust sampler characterisation: Efficiency curve reproducibility. Journal of Aerosol Science, 1993, 24, S457-S458.	1.8	6
89	Navigating the risk landscape. Nature Nanotechnology, 2016, 11, 211-212.	15.6	6

90 Nanomaterials in Cosmetics. , 2018, , 289-302.

#	Article	IF	CITATIONS
91	The collection of ultrafine aerosol particles for analysis bytransmission electron microscopy, using a new thermophoretic precipitator. Journal of Aerosol Science, 1991, 22, S379-S382.	1.8	5
92	Commentary: Oversight of Engineered Nanomaterials in the Workplace. Journal of Law, Medicine and Ethics, 2009, 37, 651-658.	0.4	5
93	Sampling errors associated with sampling plate-like particles using the Higgins- and Dewell-type personal respirable cyclone. Journal of Aerosol Science, 1996, 27, 575-585.	1.8	4
94	Challenges of Trainees in a Multidisciplinary Research Program: Nano-Biotechnology. Journal of Chemical Education, 2011, 88, 53-55.	1.1	4
95	Is nanotech failing casual learners?. Nature Nanotechnology, 2016, 11, 734-735.	15.6	4
96	Chapter 7. Nanoparticle Safety – A Perspective from the United States. Issues in Environmental Science and Technology, 0, , 118-131.	0.4	4
97	Microscopy in solid state science. Microscopy Research and Technique, 1993, 24, 299-315.	1.2	3
98	Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts. , 2006, , 23-38.		3
99	Introduction: The Regulatory Challenges for Nanotechnologies. , 2010, , .		3
100	Learning from the past. Nature Nanotechnology, 2015, 10, 482-483.	15.6	3
101	Nanotoxicology. , 2007, , 1-6.		3
102	Conclusions: Triggers, Gaps, Risks and Trust. , 2010, , .		3
103	Challenges in Nanoparticle Risk Assessment. , 2011, , 1-19.		2
104	PERSONAL MEASURES OF POWER-FREQUENCY MAGNETIC FIELD EXPOSURE AMONG MEN FROM AN INFERTILITY CLINIC: DISTRIBUTION, TEMPORAL VARIABILITY AND CORRELATION WITH THEIR FEMALE PARTNERS' EXPOSURE. Radiation Protection Dosimetry, 2016, 172, 401-408.	0.4	2
105	Responsible innovation in a culture of entrepreneurship: a US perspective. , 2019, , .		2
106	An Investigation of Short-Term Gravimetric Sampling in Pig Farms and Bakeries. Journal of Occupational and Environmental Hygiene, 1997, 12, 662-669.	0.5	1
107	Responsible nanotech at work. Materials Today, 2004, 7, 56.	8.3	1
108	Living with nanoparticles. Nano Today, 2008, 3, 64.	6.2	1

#	Article	IF	CITATIONS
109	What Are the Warning Signs That We Should Be Looking For?. , 2014, , 9-24.		1
110	Exploring Boundaries Around the Safe Use of Advanced Materials. , 2014, , 339-363.		1
111	The Challenge of Nanomaterial Risk Assessment. , 2016, , 1-20.		1
112	Thinking Differently about Risk. Astrobiology, 2018, 18, 244-245.	1.5	1
113	Exploring Boundaries Around the Safe Use of Advanced Materials. , 2018, , 427-452.		1
114	Nanotechnology and occupational health: New technologies $\hat{a} \in \raimedia$ new challenges. , 2006, , 1-3.		1
115	Aerosols in the industrial environment. , 2004, , 220-259.		1
116	Responsible Innovation, Global Governance, and Emerging Technologies. , 2013, , 192-211.		1
117	26.P.06 The generation of micro-machined particle aerosols for characterising aerosol samplers. Journal of Aerosol Science, 1994, 25, 445-446.	1.8	0
118	OVERVIEW OF METHODS FOR ANALYSING SINGLE ULTRAFINE PARTICLES. , 2003, , 37-60.		0
119	Mitigating Risks to Pregnant Teens from Zika Virus. Journal of Law, Medicine and Ethics, 2016, 44,	0.4	0