Li-Wei Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8194086/publications.pdf

Version: 2024-02-01

840585 887953 1,213 15 11 17 citations h-index g-index papers 17 17 17 3440 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discovery, 2020, 6, 31.	3.1	644
2	Shp2 promotes liver cancer stem cell expansion by augmenting $\hat{l}^2\hat{a}$ \in $\hat{\epsilon}$ at enin signaling and predicts chemotherapeutic response of patients. Hepatology, 2017, 65, 1566-1580.	3.6	127
3	Acetylâ€coenzyme A carboxylase alpha promotion of glucoseâ€mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology, 2016, 63, 1272-1286.	3.6	101
4	Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma. Journal of Experimental Medicine, 2016, 213, 859-875.	4.2	48
5	The oncoprotein p28GANK establishes a positive feedback loop in \hat{l}^2 -catenin signaling. Cell Research, 2011, 21, 1248-1261.	5.7	45
6	Signal regulatory protein $\hat{l}\pm$ negatively regulates both TLR3 and cytoplasmic pathways in type I interferon induction. Molecular Immunology, 2008, 45, 3025-3035.	1.0	41
7	SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts. Cancer Letters, 2017, 398, 1-11.	3.2	33
8	Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy. Cancer Letters, 2018, 421, 161-169.	3.2	26
9	PTEN status determines chemosensitivity to proteasome inhibition in cholangiocarcinoma. Science Translational Medicine, 2020, 12, .	5.8	23
10	RPB5â€Mediating Protein Promotes Cholangiocarcinoma Tumorigenesis and Drug Resistance by Competing With NRF2 for KEAP1 Binding. Hepatology, 2020, 71, 2005-2022.	3.6	18
11	RMP predicts survival and adjuvant TACE response in hepatocellular carcinoma. Oncotarget, 2015, 6, 3432-3442.	0.8	10
12	RPRD1A stabilizes NRF2 and aggravates HCC progression through competing with p62 for TRIM21 binding. Cell Death and Disease, 2022, 13, 6.	2.7	10
13	PTEN deficiency facilitates the therapeutic vulnerability to proteasome inhibitor bortezomib in gallbladder cancer. Cancer Letters, 2021, 501, 187-199.	3.2	9
14	Metabolic Reprogramming and Its Relationship to Survival in Hepatocellular Carcinoma. Cells, 2022, 11, 1066.	1.8	8
15	Metabolic Reprogramming and Risk Stratification of Hepatocellular Carcinoma Studied by Using Gas Chromatography–Mass Spectrometry-Based Metabolomics. Cancers, 2022, 14, 231.	1.7	5