
Hilde Loge Nilsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8193650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 401-412.	7.1	1,008
3	Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice. Current Biology, 2002, 12, 1748-1755.	1.8	648
4	Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction. Cell, 2014, 157, 882-896.	13.5	554
5	NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, 2016, 24, 566-581.	7.2	420
6	Base excision repair of DNA in mammalian cells. FEBS Letters, 2000, 476, 73-77.	1.3	324
7	Uracil-DNA Glycosylase (UNG)-Deficient Mice Reveal a Primary Role of the Enzyme during DNA Replication. Molecular Cell, 2000, 5, 1059-1065.	4.5	300
8	hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-stranded DNA, with hSMUG1 as a Broad Specificity Backup. Journal of Biological Chemistry, 2002, 277, 39926-39936.	1.6	289
9	Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Research, 1997, 25, 750-755.	6.5	275
10	Mitophagy in neurodegeneration and aging. Neurochemistry International, 2017, 109, 202-209.	1.9	272
11	Base excision repair in a network of defence and tolerance. Carcinogenesis, 2001, 22, 987-998.	1.3	177
12	Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO Journal, 2001, 20, 4278-4286.	3.5	174
13	NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 2019, 10, 5284.	5.8	165
14	Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene, 2003, 22, 5381-5386.	2.6	143
15	Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Scientific Reports, 2017, 7, 46208.	1.6	116
16	Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nature Biomedical Engineering, 2022, 6, 76-93.	11.6	110
17	DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO Journal, 2002, 21, 5943-5952.	3.5	108
18	Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis, 2004, 26, 547-555.	1.3	91

#	Article	IF	CITATIONS
19	Properties and functions of human uracil-DNA glycosylase from the UNG gene. Progress in Molecular Biology and Translational Science, 2001, 68, 365-386.	1.9	80
20	Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12502-12507.	3.3	72
21	Microglial mitophagy mitigates neuroinflammation in Alzheimer's disease. Neurochemistry International, 2019, 129, 104469.	1.9	72
22	The Human Base Excision Repair Enzyme SMUG1 Directly Interacts with DKC1 and Contributes to RNA Quality Control. Molecular Cell, 2013, 49, 339-345.	4.5	59
23	Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nature Communications, 2013, 4, 2674.	5.8	54
24	Abrogation of the CLKâ€2 checkpoint leads to tolerance to baseâ€excision repair intermediates. EMBO Reports, 2006, 7, 1046-1051.	2.0	46
25	Sequence specificity for removal of uracil from U·A pairs and U·G mismatches by uracil-DNA glycosylase fromEscherichia coli, and correlation with mutational hotspots. FEBS Letters, 1995, 362, 205-209.	1.3	44
26	Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survival. Journal of Translational Medicine, 2017, 15, 102.	1.8	44
27	Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1. Scientific Reports, 2017, 7, 7199.	1.6	43
28	Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Research, 2013, 41, 5368-5381.	6.5	40
29	NAD ⁺ in DNA repair and mitochondrial maintenance. Cell Cycle, 2017, 16, 491-492.	1.3	40
30	Monoclonal B-cell hyperplasia and leukocyte imbalance precede development of B-cell malignancies in uracil-DNA glycosylase deficient mice. DNA Repair, 2005, 4, 1432-1441.	1.3	38
31	No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Scientific Reports, 2017, 7, 4384.	1.6	37
32	Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes. PLoS Genetics, 2019, 15, e1007981.	1.5	36
33	The NAD+-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mechanisms of Ageing and Development, 2020, 185, 111194.	2.2	36
34	Shared developmental roles and transcriptional control of autophagy and apoptosis in <i>Caenorhabditis elegans</i> . Journal of Cell Science, 2011, 124, 1510-1518.	1.2	34
35	The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proceedings of the United States of America, 2019, 116, 22158-22163.	3.3	34
36	Analysis of uracil-DNA glycosylases from the murine Ung gene reveals differential expression in tissues and in embryonic development and a subcellular sorting pattern that differs from the human homologues. Nucleic Acids Research, 2000, 28, 2277-2285.	6.5	31

#	Article	IF	CITATIONS
37	Targeting NAD+ in translational research to relieve diseases and conditions of metabolic stress and ageing. Mechanisms of Ageing and Development, 2020, 186, 111208.	2.2	31
38	Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cellular and Molecular Life Sciences, 2014, 71, 2451-2465.	2.4	30
39	Rapid determination of amino acid incorporation by stable isotope labeling with amino acids in cell culture (SILAC). Rapid Communications in Mass Spectrometry, 2007, 21, 3919-3926.	0.7	28
40	APE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation. Oncotarget, 2016, 7, 26293-26306.	0.8	27
41	Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Reports, 2021, 36, 109668.	2.9	26
42	Caenorhabditis elegans APN-1 plays a vital role in maintaining genome stability. DNA Repair, 2010, 9, 169-176.	1.3	23
43	A Two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways. Aging, 2010, 2, 133-159.	1.4	23
44	SMUG1 Promotes Telomere Maintenance through Telomerase RNA Processing. Cell Reports, 2019, 28, 1690-1702.e10.	2.9	23
45	Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation. DNA Repair, 2021, 99, 103051.	1.3	22
46	Sequence variation in the human uracil-DNA glycosylase (UNG) gene. Mutation Research DNA Repair, 2001, 461, 325-338.	3.8	21
47	In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans , and Mice. Journal of Visualized Experiments, 2017, , .	0.2	20
48	Caenorhabditis elegans NDX-4 is a MutT-type enzyme that contributes to genomic stability. DNA Repair, 2011, 10, 176-187.	1.3	19
49	Mutation frequencies and AID activation state in B-cell lymphomas from Ung-deficient mice. Oncogene, 2005, 24, 3063-3066.	2.6	18
50	Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents. DNA Repair, 2010, 9, 861-870.	1.3	17
51	Cross-Species Functional Genomic Analysis Identifies Resistance Genes of the Histone Deacetylase Inhibitor Valproic Acid. PLoS ONE, 2012, 7, e48992.	1.1	17
52	Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. Biology, 2021, 10, 163.	1.3	11
53	DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development. Atherosclerosis, 2021, 324, 123-132.	0.4	11
54	Neuropsychiatric phenotype in relation to gene variants in the hemizygous allele in 3q29 deletion carriers: A case series. Molecular Genetics & Genomic Medicine, 2019, 7, e889.	0.6	10

#	Article	lF	CITATIONS
55	The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID. NAR Cancer, 2021, 2, zcaa019.	1.6	10
56	Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNA glycosylase deficient C. elegans. DNA Repair, 2018, 61, 46-55.	1.3	10
57	Quantitative Proteome Analysis Reveals RNA Processing Factors As Modulators of Ionizing Radiation-Induced Apoptosis in the <i>C. elegans</i> Germline Journal of Proteome Research, 2012, 11, 4277-4288.	1.8	9
58	Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome. Brain, Behavior, and Immunity, 2019, 76, 82-96.	2.0	9
59	C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration. Frontiers in Aging, 0, 3, .	1.2	9
60	Interferon gamma may improve cardiac function in Friedreich's ataxia cardiomyopathy. International Journal of Cardiology, 2016, 221, 376-378.	0.8	8
61	<scp>BRCA</scp> 1 and <scp>BARD</scp> 1 mediate apoptotic resistance but not longevity upon mitochondrial stress in <i>Caenorhabditis elegans</i> . EMBO Reports, 2018, 19, .	2.0	8
62	RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules, 2021, 11, 76.	1.8	8
63	Maintenance of Chronic Fatigue Syndrome (CFS) in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype. PLoS ONE, 2015, 10, e0140883.	1.1	8
64	Assessment of dopaminergic neuron degeneration in a C.Âelegans model of Parkinson's disease. STAR Protocols, 2022, 3, 101264.	0.5	8
65	hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair, 2018, 69, 53-62.	1.3	7
66	The Contribution of DNA Base Damage to Human Cancer Is Modulated by the Base Excision Repair Interaction Network. Critical Reviews in Oncogenesis, 2008, 14, 217-273.	0.2	7
67	TLR9 stimulation of B-cells induces transcription of p53 and prevents spontaneous and irradiation-induced cell death independent of DNA damage responses. Implications for Common variable immunodeficiency. PLoS ONE, 2017, 12, e0185708.	1.1	6
68	Global transcriptional response after exposure of fission yeast cells to ultraviolet light. BMC Cell Biology, 2009, 10, 87.	3.0	5
69	ZBTB11 dysfunction: spectrum of brain abnormalities, biochemical signature and cellular consequences. Brain, 2022, 145, 2602-2616.	3.7	5
70	Mucosal Gene Transcript Signatures in Treatment NaÃ ⁻ ve Inflammatory Bowel Disease: A Comparative Analysis of Disease to Symptomatic and Healthy Controls in the European IBD-Character Cohort. Clinical and Experimental Gastroenterology, 2022, Volume 15, 5-25.	1.0	5
71	Active transcriptomic and proteomic reprogramming in the <i>C. elegans</i> nucleotide excision repair mutant xpa-1. Worm, 2013, 2, e27337.	1.0	4
72	Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genetics, 2019, 15, e1008338.	1.5	3

#	Article	IF	CITATIONS
73	NEIL3-deficient bone marrow displays decreased hematopoietic capacity and reduced telomere length. Biochemistry and Biophysics Reports, 2022, 29, 101211.	0.7	2
74	Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification. Frontiers in Immunology, 2021, 12, 762032.	2.2	2
75	Prototype precision oncology learning ecosystem: Norwegian precision cancer medicine implementation initiative Journal of Clinical Oncology, 2022, 40, e13634-e13634.	0.8	2
76	DNA Base Excision Repair. , 2004, , 603-608.		1
77	Telomere maintenance: regulating <i>hTERC</i> fate through RNA modifications. Molecular and Cellular Oncology, 2019, 6, e1670489.	0.3	1
78	Phaeochromocytomas overexpress insulin transcript and produce insulin. Endocrine Connections, 2021, 10, 815-824.	0.8	1
79	Identification of Molecular Targets of AML by Phosphoproteomic Screening of Valproic Acid Treated BNML and C. Elegans RNAi Validation Blood, 2009, 114, 4151-4151.	0.6	0