
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8193632/publications.pdf Version: 2024-02-01

DETDA LOUIS

#	Article	IF	CITATIONS
1	Longâ€ŧerm personalized low FODMAP diet improves symptoms and maintains luminal Bifidobacteria abundance in irritable bowel syndrome. Neurogastroenterology and Motility, 2022, 34, e14241.	1.6	31
2	Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria. Microbial Genomics, 2022, 8, .	1.0	10
3	Higher total faecal short-chain fatty acid concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched-chain fatty acids across multiple human studies. Gut Microbiome, 2022, 3, .	0.8	8
4	Immune Responsiveness to LPS Determines Risk of Childhood Wheeze and Asthma in 17q21 Risk Allele Carriers. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 641-650.	2.5	13
5	Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome, 2022, 3, .	0.8	41
6	Human Gut Faecalibacterium prausnitzii Deploys a Highly Efficient Conserved System To Cross-Feed on β-Mannan-Derived Oligosaccharides. MBio, 2021, 12, e0362820.	1.8	31
7	Prebiotic fructans have greater impact on luminal microbiology and CD3+ T cells in healthy siblings than patients with Crohn's disease: A pilot study investigating the potential for primary prevention of inflammatory bowel disease. Clinical Nutrition, 2021, 40, 5009-5019.	2.3	12
8	Dietary fibre complexity and its influence on functional groups of the human gut microbiota. Proceedings of the Nutrition Society, 2021, 80, 386-397.	0.4	9
9	Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. Journal of Functional Foods, 2020, 64, 103597.	1.6	29
10	Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. MBio, 2020, 11, .	1.8	103
11	Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nature Medicine, 2020, 26, 1766-1775.	15.2	202
12	Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins. Toxins, 2020, 12, 654.	1.5	14
13	Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. MSystems, 2020, 5, .	1.7	67
14	βâ€Glucan is a major growth substrate for human gut bacteria related to <scp><i>Coprococcus eutactus</i></scp> . Environmental Microbiology, 2020, 22, 2150-2164.	1.8	22
15	Comparative genetic and physiological characterisation of Pectinatus species reveals shared tolerance to beer-associated stressors but halotolerance specific to pickle-associated strains. Food Microbiology, 2020, 90, 103462.	2.1	6
16	The effect of prunes on stool output, gut transit time and gastrointestinal microbiota: A randomised controlled trial. Clinical Nutrition, 2019, 38, 165-173.	2.3	27
17	Randomised clinical trial: <i>Bifidobacterium lactis</i> NCC2818 probiotic vs placebo, and impact on gut transit time, symptoms, and gut microbiology in chronic constipation. Alimentary Pharmacology and Therapeutics, 2019, 49, 251-264.	1.9	45
18	Formate crossâ€feeding and cooperative metabolic interactions revealed by transcriptomics in coâ€cultures of acetogenic and amylolytic human colonic bacteria. Environmental Microbiology, 2019, 21, 259-271.	1.8	58

#	Article	IF	CITATIONS
19	Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starchâ€degrader <i>Ruminococcus bromii</i> . Environmental Microbiology, 2018, 20, 324-336.	1.8	79
20	microPop: Modelling microbial populations and communities in R. Methods in Ecology and Evolution, 2018, 9, 399-409.	2.2	23
21	Mutual Interaction of Phenolic Compounds and Microbiota: Metabolism of Complex Phenolic Apigenin- <i>C</i> - and Kaempferol- <i>O</i> -Derivatives by Human Fecal Samples. Journal of Agricultural and Food Chemistry, 2018, 66, 485-497.	2.4	42
22	Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME Journal, 2018, 12, 610-622.	4.4	173
23	Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin Deoxynivalenol-3-Glucoside and Release Deoxynivalenol in Spiked Batch Cultures <i>In Vitro</i> . Applied and Environmental Microbiology, 2018, 84, .	1.4	30
24	Dietary fibers inhibit obesity in mice, but host responses in the cecum and liver appear unrelated to fiber-specific changes in cecal bacterial taxonomic composition. Scientific Reports, 2018, 8, 15566.	1.6	34
25	A Diet Low in FODMAPs Reduces Symptoms in Patients With Irritable Bowel Syndrome and A Probiotic Restores Bifidobacterium Species: A Randomized Controlled Trial. Gastroenterology, 2017, 153, 936-947.	0.6	315
26	Chlorogenic acid versus amaranth's caffeoylisocitric acid – Gut microbial degradation of caffeic acid derivatives. Food Research International, 2017, 100, 375-384.	2.9	30
27	Different Substrate Preferences Help Closely Related Bacteria To Coexist in the Gut. MBio, 2017, 8, .	1.8	10
28	Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 2017, 19, 29-41.	1.8	1,597
29	Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology, 2017, 93, .	1.3	203
30	The impact of nutrition on intestinal bacterial communities. Current Opinion in Microbiology, 2017, 38, 59-65.	2.3	111
31	1133 The Low FODMAP Diet Reduces Symptoms in Irritable Bowel Syndrome Compared With Placebo Diet and the Microbiota Alterations May Be Prevented by Probiotic Co-Administration: A 2x2 Factorial Randomized Controlled Trial. Gastroenterology, 2016, 150, S230.	0.6	8
32	How to Manipulate the Microbiota: Prebiotics. Advances in Experimental Medicine and Biology, 2016, 902, 119-142.	0.8	69
33	Extending colonic mucosal microbiome analysis—assessment of colonic lavage as a proxy for endoscopic colonic biopsies. Microbiome, 2016, 4, 61.	4.9	43
34	Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology, 2016, 14, 3.	1.7	308
35	Objections to the proposed reclassification of Eubacterium rectale as Agathobacter rectalis. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2106-2106.	0.8	9
36	Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology (United Kingdom), 2015, 161, 441-449.	0.7	26

#	Article	IF	CITATIONS
37	Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic <i>Firmicutes</i> Bacterium Ruminococcus bromii. MBio, 2015, 6, e01058-15.	1.8	145
38	Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environmental Microbiology, 2015, 17, 1615-1630.	1.8	118
39	The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing. PLoS ONE, 2014, 9, e88982.	1.1	236
40	Complete genome of a new <scp>F</scp> irmicutes species belonging to the dominant human colonic microbiota (â€~ <i><scp>R</scp>uminococcus bicirculans</i> ') reveals two chromosomes and a selective capacity to utilize plant glucans. Environmental Microbiology, 2014, 16, 2879-2890.	1.8	62
41	Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends in Microbiology, 2014, 22, 267-274.	3.5	194
42	Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal, 2014, 8, 1323-1335.	4.4	861
43	Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn's disease and their unaffected siblings. Gut, 2014, 63, 1578-1586.	6.1	127
44	The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 2014, 12, 661-672.	13.6	2,007
45	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME Journal, 2014, 8, 2218-2230.	4.4	489
46	Gut Microbiome and Obesity. , 2014, , 73-82.		3
47	Intestinal colonization: How key microbial players become established in this dynamic process. BioEssays, 2013, 35, 913-923.	1.2	61
48	How our gut microbes influence our behaviour. Journal of Neuroendocrinology, 2013, 25, 517-518.	1.2	3
49	Functional Metagenomics of Human Intestinal Microbiome \hat{I}^2 -Glucuronidase Activity. , 2013, , 1-8.		0
50	Some are more equal than others. Gut Microbes, 2013, 4, 236-240.	4.3	117
51	Microbiota of De-Novo Pediatric IBD: Increased Faecalibacterium Prausnitzii and Reduced Bacterial Diversity in Crohn's But Not in Ulcerative Colitis. American Journal of Gastroenterology, 2012, 107, 1913-1922.	0.2	245
52	Does the Human Gut Microbiota Contribute to the Etiology of Autism Spectrum Disorders?. Digestive Diseases and Sciences, 2012, 57, 1987-1989.	1.1	75
53	The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 577-589.	8.2	1,515
54	Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3, 289-306.	4.3	1,611

#	Article	IF	CITATIONS
55	<i>Ruminococcus bromii</i> is a keystone species for the degradation of resistant starch in the human colon. ISME Journal, 2012, 6, 1535-1543.	4.4	801
56	Phylogenetic distribution of genes encoding βâ€glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environmental Microbiology, 2012, 14, 1876-1887.	1.8	97
57	Impact of Intestinal Microbial Communities upon Health. , 2012, , 243-252.		2
58	Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochemical Society Transactions, 2011, 39, 1073-1078.	1.6	29
59	Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal, 2011, 5, 220-230.	4.4	1,352
60	Butyrate production in phylogenetically diverse <i>Firmicutes</i> isolated from the chicken caecum. Microbial Biotechnology, 2011, 4, 503-512.	2.0	133
61	Microorganisms in the human gut: Diversity and function. Biochemist, 2011, 33, 4-9.	0.2	0
62	Diversity of human colonic butyrateâ€producing bacteria revealed by analysis of the butyryl oA:acetate CoAâ€transferase gene. Environmental Microbiology, 2010, 12, 304-314.	1.8	599
63	Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. Journal of Medical Microbiology, 2010, 59, 141-143.	0.7	164
64	Life in the Gut: Microbial responses to Stress in the Gastrointestinal Tract. Science Progress, 2010, 93, 7-36.	1.0	41
65	Effect of inulin on the human gut microbiota: stimulation of <i>Bifidobacterium adolescentis</i> and <i>Faecalibacterium prausnitzii</i> . British Journal of Nutrition, 2009, 101, 541-550.	1.2	675
66	Gut microbial ecology. , 2009, , 38-67.		1
67	Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 2009, 294, 1-8.	0.7	1,612
68	The role of pH in determining the species composition of the human colonic microbiota. Environmental Microbiology, 2009, 11, 2112-2122.	1.8	587
69	Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiology Ecology, 2008, 66, 487-495.	1.3	240
70	Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 2008, 32, 1720-1724.	1.6	1,024
71	Heterologous ectoine production in Escherichia coli: By-passing the metabolic bottle-neck. Saline Systems, 2008, 4, 12.	2.0	58
72	Butyricicoccus pullicaecorum gen. nov., sp. nov., an anaerobic, butyrate-producing bacterium isolated from the caecal content of a broiler chicken. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2799-2802.	0.8	95

#	Article	IF	CITATIONS
73	Development of a Semiquantitative Degenerate Real-Time PCR-Based Assay for Estimation of Numbers of Butyryl-Coenzyme A (CoA) CoA Transferase Genes in Complex Bacterial Samples. Applied and Environmental Microbiology, 2007, 73, 2009-2012.	1.4	166
74	Influence of cabbage processing methods and prebiotic manipulationof colonic microflora on glucosinolate breakdown in man. British Journal of Nutrition, 2007, 98, 364-372.	1.2	55
75	Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental Microbiology, 2007, 9, 1101-1111.	1.8	518
76	Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 2007, 102, 1197-1208.	1.4	634
77	Cultivable bacterial diversity from the human colon. Letters in Applied Microbiology, 2007, 44, 343-350.	1.0	245
78	Organization of butyrate synthetic genes in human colonic bacteria: phylogenetic conservation and horizontal gene transfer. FEMS Microbiology Letters, 2007, 269, 240-247.	0.7	44
79	Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek, 2007, 91, 417-422.	0.7	135
80	A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. Microbiology (United Kingdom), 2006, 152, 179-185.	0.7	76
81	Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2437-2441.	0.8	200
82	Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut. Applied and Environmental Microbiology, 2006, 72, 3593-3599.	1.4	687
83	Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major Fermentation Product. Applied and Environmental Microbiology, 2004, 70, 5810-5817.	1.4	882
84	Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon. Journal of Bacteriology, 2004, 186, 2099-2106.	1.0	377
85	A role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by RpoS. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15959-15964.	3.3	111
86	Managing hypoosmotic stress: Aquaporins and medianosensitive channels in Escherichia coli. Current Opinion in Microbiology, 1999, 2, 166-169.	2.3	137
87	Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology (United Kingdom), 1997, 143, 1141-1149.	0.7	200
88	Identification of Plasmids in the GenusMarinococcusand Complete Nucleotide Sequence of Plasmid pPL1 fromMarinococcus halophilus. Plasmid, 1997, 38, 107-114.	0.4	5