
Ta-Ya Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8193324/publications.pdf Version: 2024-02-01

ΤΛ-ΥΛ ΟΗΠ

#	Article	IF	CITATIONS
1	Excitonic effect in black phosphorus oxides. 2D Materials, 2022, 9, 015007.	2.0	2
2	Printed flexible capacitive humidity sensors for field application. Sensors and Actuators B: Chemical, 2022, 359, 131620.	4.0	17
3	Communication—Phosphoric Acid Based Proton Conducting Polymer Electrolytes for Organic Field Effect Transistor Gate Dielectrics. ECS Journal of Solid State Science and Technology, 2021, 10, 055003.	0.9	2
4	Computational modeling of graphene-ethyl cellulose printed ink: a reactive molecular dynamic study. , 2021, , .		1
5	Electrolyte-Gated Field Effect Transistors in Biological Sensing: A Survey of Electrolytes. IEEE Journal of the Electron Devices Society, 2021, 9, 939-950.	1.2	17
6	Ag ₂ Te Colloidal Quantum Dots for Near-Infrared-II Photodetectors. ACS Applied Nano Materials, 2021, 4, 13587-13601.	2.4	11
7	3,7-Bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6-dione Dicyanides with Engineered Side Chains for Unipolar n-Type Transistors. ACS Applied Electronic Materials, 2020, 2, 103-110.	2.0	1
8	Near-Infrared-II Photodetectors Based on Silver Selenide Quantum Dots on Mesoporous TiO ₂ Scaffolds. ACS Applied Nano Materials, 2020, 3, 12209-12217.	2.4	14
9	Pyrazine as a noncovalent conformational lock in semiconducting polymers for enhanced charge transport and stability in thin film transistors. Journal of Materials Chemistry C, 2019, 7, 11507-11514.	2.7	3
10	Printing Contractive Silver Conductive Inks Using Interface Interactions to Overcome Dewetting. IEEE Journal of the Electron Devices Society, 2019, 7, 756-760.	1.2	4
11	Compact Modeling of Thin-Film Transistors for Flexible Hybrid IoT Design. IEEE Design and Test, 2019, 36, 6-14.	1.1	16
12	Artificial Neural Network Modelling and Simulation of Organic Field Effect Transistors and Circuits. , 2019, , .		0
13	Synthesis of Monodisperse Silver Chalcogenide Quantum Dots with Elevated Precursor Reactivity for the Application in Near Infrared Photodetectors. , 2019, , .		2
14	Printing Silver Conductive Inks with High Resolution and High Aspect Ratio. Advanced Materials Technologies, 2018, 3, 1700321.	3.0	19
15	Fully Printed Organic Pseudo-CMOS Circuits for Sensing Applications. , 2018, , .		Ο
16	Fully printed parallel plate capacitance humidity sensors. , 2018, , .		2
17	Printing Contractive Silver Conductive Inks Using Interface Interactions to Overcome Dewetting. , 2018, , .		1
18	Generic Parameter Extraction of Inkjet-Printed OTFTs via Optimisation Using LTspice and MATLAB. , 2018,		0

2

Та-Үа Сни

#	Article	IF	CITATIONS
19	Inkjet-printed unipolar n-type transistors on polymer substrates based on dicyanomethylene-substituted diketopyrrolopyrrole quinoidal compounds. Organic Electronics, 2018, 63, 267-275.	1.4	6
20	Improved Circuit Model Fitting of Inkjet-Printed OTFTs and a Proposal for Standardized Parameter Reporting. IEEE Transactions on Electron Devices, 2018, 65, 2485-2491.	1.6	5
21	Direct writing of inkjet-printed short channel organic thin film transistors. Organic Electronics, 2017, 51, 485-489.	1.4	16
22	Developement of Printed OTFTs and Logic Circuits. ECS Meeting Abstracts, 2017, , .	0.0	0
23	Inkjet printed thin and uniform dielectrics for capacitors and organic thin film transistors enabled by the coffee ring effect. Organic Electronics, 2016, 29, 114-119.	1.4	50
24	Inkjet printable and low annealing temperature gate-dielectric based on polymethylsilsesquioxane for flexible n-channel OFETs. Organic Electronics, 2016, 30, 213-218.	1.4	12
25	Effects of the Molecular Weight and the Sideâ€Chain Length on the Photovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers. Advanced Functional Materials, 2012, 22, 2345-2351.	7.8	223
26	High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability. Solar Energy Materials and Solar Cells, 2012, 96, 155-159.	3.0	89
27	Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Organic Electronics, 2011, 12, 1788-1793.	1.4	82
28	Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Applied Physics Letters, 2011, 98, .	1.5	138
29	Bulk Heterojunction Solar Cells Using Thieno[3,4- <i>c</i>]pyrrole-4,6-dione and Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole Copolymer with a Power Conversion Efficiency of 7.3%. Journal of the American Chemical Society, 2011, 133, 4250-4253.	6.6	1,047
30	Highly efficient polycarbazole-based organic photovoltaic devices. Applied Physics Letters, 2009, 95, 063304.	1.5	107
31	A morphologically stable host material for efficient phosphorescent green and red organic light emitting devices. Thin Solid Films, 2008, 517, 943-947.	0.8	41
32	Iminodibenzyl-substituted distyrylarylenes as dopants for blue and white organic light-emitting devices. Organic Electronics, 2008, 9, 101-110.	1.4	17
33	Apparent thickness dependence of mobility in organic thin films analyzed by Gaussian disorder model. Journal of Applied Physics, 2008, 104, 023711.	1.1	22
34	Enhanced performance of organic light-emitting diodes with an air-stable n-type hole-injection layer. Applied Physics Letters, 2008, 92, 233307.	1.5	11
35	Ohmic contact probed by dark injection space-charge-limited current measurements. Journal of Applied Physics, 2008, 104, .	1.1	20
36	Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents. Applied Physics Letters, 2007, 90, 203512.	1.5	243

Та-Үа Сни

#	Article	IF	CITATIONS
37	Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes. Applied Physics Letters, 2007, 91, 223509.	1.5	27
38	Thickness dependence of the trap states in organic thin film of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine. Applied Physics Letters, 2007, 91, .	1.5	22
39	Structural and optical properties of single crystal Zn1â^xMgxO nanorods—Experimental and theoretical studies. Journal of Applied Physics, 2007, 101, 033502.	1.1	39
40	P-192: Highly Efficient Blue Organic Electroluminescent Devices. Digest of Technical Papers SID International Symposium, 2006, 37, 950.	0.1	1
41	Ultrathin Electron Injection Layer on Indium–Tin Oxide Bottom Cathode for Highly Efficient Inverted Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, 4948-4950.	0.8	30
42	Comparative study of single and multiemissive layers in inverted white organic light-emitting devices. Applied Physics Letters, 2006, 89, 113502.	1.5	25
43	Highly efficient and stable inverted bottom-emission organic light emitting devices. Applied Physics Letters, 2006, 89, 053503.	1.5	114
44	Stable inverted bottom-emitting organic electroluminescent devices with molecular doping and morphology improvement. Applied Physics Letters, 2006, 89, 053518.	1.5	122
45	Characterization of electronic structure of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAIq) for phosphorescent organic light emitting devices. Chemical Physics Letters, 2005, 404, 121-125.	1.2	29
46	Ab initio molecular orbital study of 1,3,5-triazine derivatives for phosphorescent organic light emitting devices. Chemical Physics Letters, 2005, 415, 137-140.	1.2	30