
Jian-Ye Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8193320/publications.pdf Version: 2024-02-01

LIAN-YE XIA

#	Article	IF	CITATIONS
1	γ-PGA Fermentation by Bacillus subtilis PG-001 with Glucose Feedback Control pH-stat Strategy. Applied Biochemistry and Biotechnology, 2022, 194, 1871-1880.	2.9	6
2	Genomeâ€Scale Metabolic Model's multiâ€objective solving algorithm based on the inflexion point of Pareto front including maximum energy utilization and its application in <i>Aspergillus niger</i> DS03043. Biotechnology and Bioengineering, 2022, 119, 1539-1555.	3.3	1
3	Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nature Communications, 2022, 13, .	12.8	28
4	Multi-omics analyses of the transition to the Crabtree effect in S. cerevisiae reveals a key role for the citric acid shuttle. FEMS Yeast Research, 2022, 22, .	2.3	2
5	Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains. Chinese Journal of Chemical Engineering, 2021, 30, 178-184.	3.5	11
6	Dynamic response of Aspergillus niger to periodical glucose pulse stimuli in chemostat cultures. Biotechnology and Bioengineering, 2021, 118, 2265-2282.	3.3	7
7	Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions. Microbial Cell Factories, 2021, 20, 125.	4.0	17
8	A new strategy for dynamic metabolic flux estimation by integrating transient metabolome data into genome-scale metabolic models. Bioprocess and Biosystems Engineering, 2021, 44, 2553-2565.	3.4	1
9	Impact of Altered Trehalose Metabolism on Physiological Response of Penicillium chrysogenum Chemostat Cultures during Industrially Relevant Rapid Feast/Famine Conditions. Processes, 2021, 9, 118.	2.8	5
10	Novel scale-up strategy based on three-dimensional shear space for animal cell culture. Chemical Engineering Science, 2020, 212, 115329.	3.8	17
11	Enzymatic Preparation of the Chiral (<i>S</i>)-Sulfoxide Drug Esomeprazole at Pilot-Scale Levels. Organic Process Research and Development, 2020, 24, 1124-1130.	2.7	33
12	Dynamic response of Aspergillus niger to single pulses of glucose with high and low concentrations. Bioresources and Bioprocessing, 2019, 6, .	4.2	12
13	Numerical and experimental assessment of a miniature bioreactor equipped with a mechanical agitator and nonâ€invasive biosensors. Journal of Chemical Technology and Biotechnology, 2019, 94, 2671-2683.	3.2	4
14	Comparative performance of different scaleâ€down simulators of substrate gradients in <i>Penicillium chrysogenum</i> cultures: the need of a biological systems response analysis. Microbial Biotechnology, 2018, 11, 486-497.	4.2	27
15	Power input effects on degeneration in prolonged penicillin chemostat cultures: A systems analysis at flux, residual glucose, metabolite, and transcript levels. Biotechnology and Bioengineering, 2018, 115, 114-125.	3.3	17
16	Gas-liquid mass transfer studies: The influence of single- and double-impeller configurations in stirred tanks. Korean Journal of Chemical Engineering, 2018, 35, 61-72.	2.7	6
17	Multi-omics integrative analysis with genome-scale metabolic model simulation reveals global cellular adaptation of Aspergillus niger under industrial enzyme production condition. Scientific Reports, 2018, 8, 14404.	3.3	36
18	Dynamic metabolic response of Aspergillus niger to glucose perturbation: evidence of regulatory mechanism for reduced glucoamylase production. Journal of Biotechnology, 2018, 287, 28-40.	3.8	8

JIAN-YE XIA

#	Article	IF	CITATIONS
19	Hydrodynamic investigation of a novel shear-generating device for the measurement of anchorage-dependent cell adhesion intensity. Bioprocess and Biosystems Engineering, 2018, 41, 1371-1382.	3.4	11
20	A 9â€pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by <i>Penicillium chrysogenum</i> . Biotechnology and Bioengineering, 2017, 114, 1733-1743.	3.3	41
21	The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology, 2017, 35, 1156-1168.	9.3	67
22	Comprehensive reconstruction and in silico analysis of <i>Aspergillus niger</i> genomeâ€scale metabolic network model that accounts for 1210 ORFs. Biotechnology and Bioengineering, 2017, 114, 685-695.	3.3	33
23	CFD Simulation of Average and Local Gas–Liquid Flow Properties in Stirred Tank Reactors with Multiple Rushton Impellers. Journal of Chemical Engineering of Japan, 2017, 50, 878-891.	0.6	8
24	Quantitative evaluation of the shear threshold on Carthamus tinctorius L. cell growth with computational fluid dynamics in shaken flask bioreactors. Biochemical Engineering Journal, 2016, 113, 66-76.	3.6	19
25	Application of Eulerâ¿¿Lagrange CFD for quantitative evaluating the effect of shear force on Carthamus tinctorius L. cell in a stirred tank bioreactor. Biochemical Engineering Journal, 2016, 114, 209-217.	3.6	43
26	Integrated isotope-assisted metabolomics and 13C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microbial Cell Factories, 2015, 14, 147.	4.0	34
27	Integration of microbial kinetics and fluid dynamics toward modelâ€driven scaleâ€up of industrial bioprocesses. Engineering in Life Sciences, 2015, 15, 20-29.	3.6	71
28	Dependence of fungal characteristics on seed morphology and shear stress in bioreactors. Bioprocess and Biosystems Engineering, 2015, 38, 917-928.	3.4	17
29	Advances and Practices of Bioprocess Scale-up. Advances in Biochemical Engineering/Biotechnology, 2015, 152, 137-151.	1.1	17
30	Improvement of glucoamylase production using axial impellers with low power consumption and homogeneous mass transfer. Biochemical Engineering Journal, 2015, 99, 167-176.	3.6	19
31	Power consumption, local and average volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solutions. Chemical Engineering Science, 2014, 106, 144-156.	3.8	43
32	Prelude to rational scale-up of penicillin production: a scale-down study. Applied Microbiology and Biotechnology, 2014, 98, 2359-2369.	3.6	29
33	Flow Pattern, Mixing, Gas Hold-Up and Mass Transfer Coefficient of Triple-Impeller Configurations in Stirred Tank Bioreactors. Industrial & Engineering Chemistry Research, 2014, 53, 5941-5953.	3.7	54
34	Effects of flow field on the metabolic characteristics of Streptomyces lincolnensis in the industrial fermentation of lincomycin. Journal of Bioscience and Bioengineering, 2013, 115, 27-31.	2.2	8
35	CFD analysis of the turbulent flow in baffled shake flasks. Biochemical Engineering Journal, 2013, 70, 140-150.	3.6	54
36	A novel impeller configuration to improve fungal physiology performance and energy conservation for cephalosporin C production. Journal of Biotechnology, 2012, 161, 250-256.	3.8	31

JIAN-YE XIA

#	Article	IF	CITATIONS
37	Comparison of Power Number for Paddle-Type Impellers by Three Methods. Journal of Chemical Engineering of Japan, 2011, 44, 840-844.	0.6	12
38	Computational fluid dynamics modeling of an inverted frustoconical shaking bioreactor for mammalian cell suspension culture. Biotechnology and Bioprocess Engineering, 2011, 16, 567-575.	2.6	12
39	Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnology Advances, 2009, 27, 989-995.	11.7	43
40	Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochemical Engineering Journal, 2009, 43, 252-260.	3.6	66
41	Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor. Biochemical Engineering Journal, 2008, 38, 406-413.	3.6	31
42	Review of construction methods for whole-cell computational models. Systems Microbiology and Biomanufacturing, 0, , 1.	2.9	1