Bruce L Rhoads

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8192458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow structure at an asymmetrical stream confluence. Geomorphology, 1995, 11, 273-293.	1.1	228
2	Interaction Between Scientists and Nonscientists in Community-Based Watershed Management: Emergence of the Concept of Stream Naturalization. Environmental Management, 1999, 24, 297-308.	1.2	216
3	<scp>I</scp> ntervention: Critical physical geography. Canadian Geographer / Geographie Canadien, 2014, 58, 1-10.	1.0	216
4	Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resources Research, 2001, 37, 2393-2410.	1.7	198
5	Three-dimensional flow structure and channel change in an asymmetrical compound meander loop, Embarras River, Illinois. Earth Surface Processes and Landforms, 2003, 28, 625-644.	1.2	164
6	Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insight provided by an eddyâ€resolving numerical simulation. Water Resources Research, 2011, 47, .	1.7	153
7	Time-averaged flow structure in the central region of a stream confluence. Earth Surface Processes and Landforms, 1998, 23, 171-191.	1.2	151
8	Field investigation of three-dimensional flow structure at stream confluences: 2. Turbulence. Water Resources Research, 2001, 37, 2411-2424.	1.7	147
9	Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction: potential ecological implications. Hydrological Processes, 2016, 30, 3949-3966.	1.1	138
10	Spatial and temporal structure of shear layer turbulence at a stream confluence. Water Resources Research, 2004, 40, .	1.7	116
11	Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface. Water Resources Research, 2008, 44, .	1.7	116
12	Extreme sediment pulses generated by bend cutoffs along a large meandering river. Nature Geoscience, 2011, 4, 675-678.	5.4	115
13	Numerical analysis of the effect of momentum ratio on the dynamics and sedimentâ€entrainment capacity of coherent flow structures at a stream confluence. Journal of Geophysical Research, 2012, 117, .	3.3	112
14	Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology, 2016, 252, 80-97.	1.1	108
15	Influence of four run-of-river dams on channel morphology and sediment characteristics in Illinois, USA. Geomorphology, 2014, 206, 215-229.	1.1	99
16	Response of bed morphology and bed material texture to hydrological conditions at an asymmetrical stream confluence. Geomorphology, 2009, 109, 161-173.	1.1	97
17	Flow structure and channel morphology at a natural confluent meander bend. Geomorphology, 2012, 163-164, 84-98.	1.1	96
18	Influence of floodplain erosional heterogeneity on planform complexity of meandering rivers. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	95

#	Article	IF	CITATIONS
19	Hydrologic control of spatial patterns of suspended sediment concentration at a stream confluence. Journal of Hydrology, 1995, 168, 251-263.	2.3	94
20	Initiation of river meandering. Progress in Physical Geography, 1991, 15, 127-156.	1.4	93
21	Depositional response of a headwater stream to channelization, East Central Illinois, USA. River Research and Applications, 2003, 19, 77-100.	0.7	93
22	Interaction among mean flow, turbulence, bed morphology, bank failures and channel planform in an evolving compound meander loop. Geomorphology, 2012, 163-164, 70-83.	1.1	93
23	Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. Journal of Hydrology, 2018, 556, 325-338.	2.3	93
24	Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2468-2487.	1.0	91
25	Historical changes in channel network extent and channel planform in an intensively managed landscape: Natural versus human-induced effects. Geomorphology, 2016, 252, 17-31.	1.1	91
26	Catastrophic Human-Induced Change in Stream-Channel Planform and Geometry in an Agricultural Watershed, Illinois, USA. Annals of the American Association of Geographers, 2003, 93, 783-796.	3.0	89
27	Stream geomorphology, bank vegetation, and three-dimensional habitat hydraulics for fish in midwestern agricultural streams. Water Resources Research, 2003, 39, .	1.7	85
28	High-resolution Numerical Simulation of Flow Through a Highly Sinuous River Reach. Water Resources Management, 2004, 18, 177-199.	1.9	84
29	Empirical analysis of the planform curvatureâ€migration relation of meandering rivers. Water Resources Research, 2009, 45, .	1.7	84
30	A Continuously Varying Parameter Model of Downstream Hydraulic Geometry. Water Resources Research, 1991, 27, 1865-1872.	1.7	82
31	CHANGES IN STREAM CHANNEL CHARACTERISTICS AT TRIBUTARY JUNCTIONS. Physical Geography, 1987, 8, 346-361.	0.6	79
32	STREAM POWER TERMINOLOGY. Professional Geographer, 1987, 39, 189-195.	1.0	78
33	A Multiscale Conceptual Framework for Integrated Ecogeomorphological Research to Support Stream Naturalization in the Agricultural Midwest. Environmental Management, 2002, 29, 16-33.	1.2	75
34	Influence of junction angle on threeâ€dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions. Earth Surface Processes and Landforms, 2015, 40, 252-271.	1.2	74
35	Influence of a large woody debris obstruction on three-dimensional flow structure in a meander bend. Geomorphology, 2003, 51, 159-173.	1.1	73
36	Effect of large woody debris configuration on three-dimensional flow structure in two low-energy meander bends at varying stages. Water Resources Research, 2004, 40, .	1.7	73

#	Article	IF	CITATIONS
37	Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1278-1293.	1.0	72
38	Numerical evaluation of the effects of planform geometry and inflow conditions on flow, turbulence structure, and bed shear velocity at a stream confluence with a concordant bed. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2079-2097.	1.0	68
39	Rates and patterns of thermal mixing at a small stream confluence under variable incoming flow conditions. Hydrological Processes, 2015, 29, 4442-4456.	1.1	64
40	Influence of planform geometry and momentum ratio on thermal mixing at a stream confluence with a concordant bed. Environmental Fluid Mechanics, 2016, 16, 845-873.	0.7	64
41	Spatial–temporal structure of mixing interface turbulence at two large river confluences. Environmental Fluid Mechanics, 2014, 14, 1043-1070.	0.7	63
42	Continuous Characterization of the Planform Geometry and Curvature of Meandering Rivers. Geographical Analysis, 2008, 40, 1-25.	1.9	62
43	The Dynamic Basis of Geomorphology Reenvisioned. Annals of the American Association of Geographers, 2006, 96, 14-30.	3.0	61
44	Threeâ€dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics. Water Resources Research, 2016, 52, 9621-9641.	1.7	60
45	Three-dimensional flow structure, morphodynamics, suspended sediment, and thermal mixing at an asymmetrical river confluence of a straight tributary and curving main channel. Geomorphology, 2018, 323, 51-69.	1.1	60
46	On secondary circulation, helical motion andÂRozovskii-based analysis of time-averagedÂŧwo-dimensional velocity fields at confluences. Earth Surface Processes and Landforms, 1999, 24, 369-375.	1.2	58
47	Threeâ€dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend. Earth Surface Processes and Landforms, 2016, 41, 1211-1226.	1.2	58
48	LSPIV Measurements of Twoâ€Dimensional Flow Structure in Streams Using Small Unmanned Aerial Systems: 2. Hydrodynamic Mapping at River Confluences. Water Resources Research, 2018, 54, 7981-7999.	1.7	54
49	Spatial autoregressive structure of meander evolution revisited. Geomorphology, 2010, 120, 91-106.	1.1	50
50	Mutual Adjustments between Process and Form in a Desert Mountain Fluvial System. Annals of the American Association of Geographers, 1988, 78, 271-287.	3.0	47
51	Impact of flow variability on the morphology of a low-energy meandering river. Earth Surface Processes and Landforms, 1991, 16, 357-367.	1.2	42
52	Resolving twoâ€dimensional flow structure in rivers using largeâ€scale particle image velocimetry: An example from a stream confluence. Water Resources Research, 2015, 51, 7977-7994.	1.7	41
53	Length scales and statistical characteristics of outer bank roughness for large elongate meander bends: The influence of bank material properties, floodplain vegetation and flow inundation. Earth Surface Processes and Landforms, 2017, 42, 2024-2037.	1.2	40
54	Assessment of Floodplain Vulnerability during Extreme Mississippi River Flood 2011. Environmental Science & Technology, 2014, 48, 2619-2625.	4.6	39

#	Article	IF	CITATIONS
55	Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging. Journal of Hydrology, 2018, 560, 230-246.	2.3	39
56	Structure of flow over alluvial bedforms: an experiment on linking field and laboratory methods. Earth Surface Processes and Landforms, 2006, 31, 1292-1310.	1.2	38
57	Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape. Geomorphology, 2018, 308, 278-292.	1.1	35
58	Large River Channel Confluences. , 2008, , 73-91.		34
59	The Intensively Managed Landscape Critical Zone Observatory: A Scientific Testbed for Understanding Critical Zone Processes in Agroecosystems. Vadose Zone Journal, 2018, 17, 1-21.	1.3	31
60	Density Effects at a Concordant Bed Natural River Confluence. Water Resources Research, 2020, 56, e2019WR026217.	1.7	29
61	LSPIV Measurements of Twoâ€Dimensional Flow Structure in Streams Using Small Unmanned Aerial Systems: 1. Accuracy Assessment Based on Comparison With Stationary Camera Platforms and Inâ€6tream Velocity Measurements. Water Resources Research, 2018, 54, 8000-8018.	1.7	27
62	Farmer Attitudes Toward Production of Perennial Energy Grasses in East Central Illinois: Implications for Community-Based Decision Making. Annals of the American Association of Geographers, 2011, 101, 852-862.	3.0	25
63	Advective Lateral Transport of Streamwise Momentum Governs Mixing at Small River Confluences. Water Resources Research, 2020, 56, e2019WR026817.	1.7	21
64	Influence of experimental removal of large woody debris on spatial patterns of three-dimensional flow in a meander bend. Earth Surface Processes and Landforms, 2007, 32, 460-474.	1.2	19
65	On being a â€~real' geomorphologist. Earth Surface Processes and Landforms, 1994, 19, 269-272.	1.2	18
66	Spatial Variability in Bankfull Stage and Bank Elevations of Lowland Meandering Rivers: Relation to Rating Curves and Channel Planform Characteristics. Water Resources Research, 2020, 56, e2020WR027477.	1.7	16
67	Impact of riverine wetlands construction and operation on stream channel stability: Conceptual framework for geomorphic assessment. Environmental Management, 1990, 14, 799-807.	1.2	12
68	The C-biogeochemistry of a Midwestern USA agricultural impoundment in context: Lake Decatur in the intensively managed landscape critical zone observatory. Biogeochemistry, 2018, 138, 171-195.	1.7	11
69	Confluence Environments at the Scale of River Networks. , 2008, , 271-300.		8
70	Large‣cale Particle Image Velocimetry Reveals Pulsing of Incoming Flow at a Stream Confluence. Water Resources Research, 2021, 57, e2021WR029662.	1.7	7
71	Introduction: River Confluences, Tributaries and the Fluvial Network. , 2008, , 1-9.		6
72	Physical Habitat Analysis and Design of In-Channel Structures on a Chicago, IL Urban Drainage: A Stream Naturalization Design Process. , 2002, , 1.		5

#	Article	IF	CITATIONS
73	Pool-Riffle Design Based on Geomorphological Principles for Naturalizing Straight Channels. Geophysical Monograph Series, 2013, , 367-384.	0.1	5
74	The Dynamics of River Confluences. , 2020, , 269-293.		5
75	Numerical Predictions of the Sensitivity of Grain Size and Channel Slope to an Increase in Precipitation. , 2008, , 367-394.		4
76	HydroSedFoam: A new parallelized two-dimensional hydrodynamic, sediment transport, and bed morphology model. Computers and Geosciences, 2018, 120, 32-39.	2.0	4
77	Analysis of shallow turbulent flows using the Hilbert-Huang transform: a tool for exploring the characteristics of turbulence and coherent flow structures. Hungarian Geographical Bulletin, 2018, 67, 343-359.	0.4	4
78	The natural and human structuring of rivers and other geomorphological systems: A tribute to William L. Graf. Geomorphology, 2016, 252, 1-4.	1.1	3
79	Channel Planform – Controls on Development and Change. , 2020, , 186-196.		3
80	Hydrologic Dispersion in Fluvial Networks. , 2008, , 307-335.		2
81	The Vertical Dimension of Rivers: Longitudinal Profiles, Profile Adjustments, and Step-Pool Morphology. , 2020, , 294-318.		2
82	Flow evolution near the apex of two small stream confluences using large-scale particle image velocimetry. , 2016, , .		2
83	Big Pine Creek Ditch revisited: Planform recovery to channelization and the timescale of river meandering. Geomorphology, 2022, 403, 108140.	1.1	2
84	Sediment Delivery: New Approaches to Modelling an Old Problem. , 2008, , 337-366.		1
85	The Dynamics of Drainage Basins and Stream Networks. , 2020, , 15-46.		1
86	Sediment Transport Dynamics in Rivers. , 2020, , 97-133.		1
87	The Dynamics of Braided Rivers. , 2020, , 234-251.		1
88	The Dynamics of Floodplains. , 2020, , 319-342.		1
89	Introduction to Part III: Channel Networks. , 2008, , 301-306.		0

90 Introduction to Part I: River Channel Confluences. , 2008, , 11-16.

0

#	Article	IF	CITATIONS
91	Introduction to Part II: Tributary-Main-Stem Interactions. , 2008, , 149-157.		Ο
92	Place Index. , 2008, , 457-457.		0
93	Sediment Dynamics at Global and Drainage-Basin Scales. , 2020, , 47-71.		0
94	Flow Dynamics in Rivers. , 2020, , 72-96.		0
95	Magnitude-Frequency Concepts and the Dynamics of Channel-Forming Events. , 2020, , 134-163.		0
96	The Shaping of Channel Geometry. , 2020, , 164-185.		0
97	The Dynamics of Meandering Rivers. , 2020, , 197-233.		0
98	The Dynamics of Anabranching Rivers. , 2020, , 252-268.		0
99	Human Impacts on River Dynamics. , 2020, , 343-368.		0
100	River Dynamics and Management. , 2020, , 369-403.		0
101	Flowing Water, Turbulent and Laminar Flows. , 2022, , .		0