Tammy E Steeves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8192375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
2	Sampling for Microsatellite-Based Population Genetic Studies: 25 to 30 Individuals per Population Is Enough to Accurately Estimate Allele Frequencies. PLoS ONE, 2012, 7, e45170.	2.5	355
3	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	1.1	97
4	Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations. Nature Communications, 2011, 2, 332.	12.8	76
5	GRAY WHALE (ESCHRICHTIUS ROBUSTUS) HABITAT UTILIZATION AND PREY SPECIES OFF VANCOUVER ISLAND, B. C Marine Mammal Science, 1998, 14, 692-720.	1.8	59
6	The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird. Journal of Evolutionary Biology, 2005, 18, 1000-1008.	1.7	57
7	Molecular characterisation of beak and feather disease virus (BFDV) in New Zealand and its implications for managing an infectious disease. Archives of Virology, 2012, 157, 1651-1663.	2.1	54
8	Genetic analyses reveal hybridization but no hybrid swarm in one of the world's rarest birds. Molecular Ecology, 2010, 19, 5090-5100.	3.9	52
9	Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide Polymorphisms to Inform Conservation Management. Genes, 2019, 10, 9.	2.4	50
10	A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide. Evolutionary Applications, 2020, 13, 991-1008.	3.1	48
11	A role for nonphysical barriers to gene flow in the diversification of a highly vagile seabird, the masked booby (Sula dactylatra). Molecular Ecology, 2005, 14, 3877-3887.	3.9	46
12	Comparative phylogeography of brown (Sula leucogaster) and red-footed boobies (S. sula): The influence of physical barriers and habitat preference on gene flow in pelagic seabirds. Molecular Phylogenetics and Evolution, 2010, 54, 883-896.	2.7	40
13	Phylogeography ofSula: the role of physical barriers to gene flow in the diversification of tropical seabirds. Journal of Avian Biology, 2003, 34, 217-223.	1.2	37
14	Molecular Support for Species Status of the Nazca Booby (Sula granti). Auk, 2002, 119, 820.	1.4	30
15	Centring Indigenous knowledge systems to reâ€imagine conservation translocations. People and Nature, 2020, 2, 512-526.	3.7	26
16	Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Molecular Ecology, 2021, 30, 5949-5965.	3.9	26
17	The relevance of pedigrees in the conservation genomics era. Molecular Ecology, 2022, 31, 41-54.	3.9	24
18	Embedding indigenous principles in genomic research of culturally significant species: a conservation genomics case study. New Zealand Journal of Ecology, 2019, 43, .	1.1	24

TAMMY E STEEVES

#	Article	IF	CITATIONS
19	Maximising evolutionary potential in functional proxies for extinct species: a conservation genetic perspective on deâ€extinction. Functional Ecology, 2017, 31, 1032-1040.	3.6	21
20	Conservation and Losses of Non-Coding RNAs in Avian Genomes. PLoS ONE, 2015, 10, e0121797.	2.5	18
21	Merging ancient and modern DNA: extinct seabird taxon rediscovered in the North Tasman Sea. Biology Letters, 2010, 6, 94-97.	2.3	17
22	Building strong relationships between conservation genetics and primary industry leads to mutually beneficial genomic advances. Molecular Ecology, 2016, 25, 5267-5281.	3.9	16
23	Conservation genetic management of a critically endangered New Zealand endemic bird: minimizing inbreeding in the Black Stilt Himantopus novaezelandiae. Ibis, 2011, 153, 556-561.	1.9	15
24	Phylogeography of the New Zealand blue duck (Hymenolaimus malacorhynchos): implications for translocation and species recovery. Conservation Genetics, 2007, 8, 1431-1440.	1.5	14
25	Comparing genomeâ€based estimates of relatedness for use in pedigreeâ€based conservation management. Molecular Ecology Resources, 2022, 22, 2546-2558.	4.8	11
26	Characterisation of microsatellite loci in the critically endangered orange-fronted kÄkÄriki (Cyanoramphus malherbi) isolated using genomic next generation sequencing. Conservation Genetics Resources, 2013, 5, 235-237.	0.8	9
27	Genomic sequencing confirms absence of introgression despite past hybridisation between a critically endangered bird and its common congener. Global Ecology and Conservation, 2021, 28, e01681.	2.1	9
28	Development of polymorphic microsatellite markers for the New Zealand black stilt (<i>Himantopus) Tj ETQq0 C</i>	0 rgBT /C 4.8	Overlock 10 Tf 8
29	Weaving placeâ€based knowledge for culturally significant species in the age of genomics: Looking to the past to navigate the future. Evolutionary Applications, 2022, 15, 751-772.	3.1	8
30	Leveraging an existing wholeâ€genome resequencing population data set to characterize tollâ€like receptor gene diversity in a threatened bird. Molecular Ecology Resources, 2022, 22, 2810-2825.	4.8	7
31	Evidence for brood parasitism in a critically endangered Charadriiform with implications for conservation. Journal of Ornithology, 2017, 158, 333-337.	1.1	6
32	Designing monitoring protocols to measure population trends of threatened insects: A case study of the cryptic, flightless grasshopper Brachaspis robustus. PLoS ONE, 2020, 15, e0238636.	2.5	5
33	Opportunities for modern genetic technologies to maintain and enhance Aotearoa New Zealand's bioheritage. New Zealand Journal of Ecology, 2020, 44, .	1.1	4
34	Evidence that reducing mammalian predators is beneficial for threatened and declining New Zealand grasshoppers. New Zealand Journal of Zoology, 2019, 46, 149-164.	1.1	3
35	Informing the design of a long-term population density monitoring protocol for a Nationally Endangered grasshopper: removal sampling as a basis for estimating individual detection probabilities. Journal of Insect Conservation, 2020, 24, 841-851.	1.4	3
36	Comprehensive evidence for subspecies designations in Cook's Petrel Pterodroma cookii with implications for conservation management. Bird Conservation International, 2021, 31, 1-13.	1.3	2

#	Article	IF	CITATIONS
37	Molecular Support for Species Status of the Nazca Booby (Sula granti). Auk, 2002, 119, 820-826.	1.4	2