Michael A Kertesz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8192312/publications.pdf

Version: 2024-02-01

73 papers 4,279 citations

36 h-index 63 g-index

74 all docs

74 docs citations

74 times ranked 4997 citing authors

#	Article	IF	CITATIONS
1	Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Applied Microbiology and Biotechnology, 2019, 103, 5831-5841.	1.7	31
2	Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover. Mycorrhiza, 2019, 29, 351-362.	1.3	27
3	Comparative effect of alternative fertilisers on pasture production, soil properties and soil microbial community structure. Crop and Pasture Science, 2019, 70, 1110.	0.7	4
4	Aerobic Hydrocarbon-Degrading Alphaproteobacteria: Sphingomonadales. , 2019, , 105-124.		14
5	Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied Microbiology and Biotechnology, 2018, 102, 1639-1650.	1.7	96
6	Bacterial population dynamics in recycled mushroom compost leachate. Applied Microbiology and Biotechnology, 2018, 102, 5335-5342.	1.7	9
7	Aerobic Hydrocarbon-Degrading Alphaproteobacteria: Sphingomonadales. , 2018, , 1-21.		4
8	Studying root water uptake of wheat genotypes in different soils using water l´180 stable isotopes. Agriculture, Ecosystems and Environment, 2018, 264, 119-129.	2.5	14
9	Seasonal total methane depletion in limestone caves. Scientific Reports, 2017, 7, 8314.	1.6	30
10	Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture, Ecosystems and Environment, 2017, 247, 130-136.	2.5	59
11	Soil <i>phoD</i> and <i>phoX</i> alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiology Ecology, 2017, 93, fiw212.	1.3	137
12	Variation in specific root length among 23 wheat genotypes affects leaf \hat{l} 13 C and yield. Agriculture, Ecosystems and Environment, 2017, 246, 21-29.	2.5	22
13	Effect of twenty four wheat genotypes on soil biochemical and microbial properties. Plant and Soil, 2016, 404, 141-155.	1.8	42
14	Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant and Soil, 2016, 408, 15-30.	1.8	93
15	Dual-labeling with 15N and H2 18O to investigate water and N uptake of wheat under different water regimes. Plant and Soil, 2016, 408, 429-441.	1.8	15
16	Assessment of functional diversity and structure of phytate-hydrolysing bacterial community in Lolium perenne rhizosphere. Plant and Soil, 2016, 401, 151-167.	1.8	15
17	Specific influence of white clover on the rhizosphere microbial community in response to polycyclic aromatic hydrocarbon (PAH) contamination. Plant and Soil, 2016, 401, 365-379.	1.8	18

#	Article	IF	Citations
19	Biological Cycling of Inorganic Nutrients and Metals in Soils and Their Role in Soil Biogeochemistry. , 2015, , 471-503.		11
20	<i>phoD</i> Alkaline Phosphatase Gene Diversity in Soil. Applied and Environmental Microbiology, 2015, 81, 7281-7289.	1.4	206
21	Determination of Cypermethrin Degradation Potential of Soil Bacteria Along with Plant Growth-Promoting Characteristics. Current Microbiology, 2015, 70, 75-84.	1.0	59
22	Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation. World Journal of Microbiology and Biotechnology, 2014, 30, 2755-2766.	1.7	20
23	Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biology and Biochemistry, 2013, 65, 69-74.	4.2	43
24	Desulfurization of mucin by Pseudomonas aeruginosa: influence of sulfate in the lungs of cystic fibrosis patients. Journal of Medical Microbiology, 2012, 61, 1644-1653.	0.7	40
25	Rhizosphere 3: where plants meet soils down-under. Plant and Soil, 2012, 358, 1-5.	1.8	7
26	Transcriptional response of Pseudomonas aeruginosa to a phosphate-deficient Lolium perenne rhizosphere. Plant and Soil, 2012, 359, 25-44.	1.8	11
27	Indirect effects of polycyclic aromatic hydrocarbon contamination on microbial communities in legume and grass rhizospheres. Plant and Soil, 2012, 358, 169-182.	1.8	68
28	Identification of Plant Quantitative Trait Loci Modulating a Rhizobacteria-Aphid Indirect Effect. PLoS ONE, 2012, 7, e41524.	1.1	13
29	Quantitative trait loci mapping of phenotypic plasticity and genotype–environment interactions in plant and insect performance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1368-1379.	1.8	47
30	Structural studies on the fullâ€length LysRâ€ <i>type</i> regulator TsaR from <i>Comamonas testosteroni</i> Tâ€2 reveal a novel open conformation of the tetrameric LTTR fold. Molecular Microbiology, 2010, 75, 1199-1214.	1.2	72
31	Community genetic interactions mediate indirect ecological effects between a parasitoid wasp and rhizobacteria. Ecology, 2010, 91, 1563-1568.	1.5	24
32	Sulfate treatment affects desulfonating bacterial community structures in Agrostis rhizospheres as revealed by functional gene analysis based on asfA. European Journal of Soil Biology, 2010, 46, 248-254.	1.4	15
33	Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS Microbiology Ecology, 2009, 67, 140-150.	1.3	26
34	High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR fromComamonas testosteroniT-2 and data-set analysis for a MIRAS structure-solution approach. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 764-769.	0.7	1
35	The role of <i>Variovorax</i> and other <i>Comamonadaceae</i> in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environmental Microbiology, 2008, 10, 1486-1500.	1.8	81
36	Two-dimensional single strand conformation polymorphism (SSCP) of 16S rRNA gene fragments reveals highly dissimilar bacterial communities in an acidic fen. European Journal of Soil Biology, 2008, 44, 495-500.	1.4	16

#	Article	IF	Citations
37	Rhizobacteria and Plant Sulfur Supply. Advances in Applied Microbiology, 2007, 62, 235-268.	1.3	64
38	Transcriptomic Analysis of the Sulfate Starvation Response of <i>Pseudomonas aeruginosa </i> Journal of Bacteriology, 2007, 189, 6743-6750.	1.0	84
39	Genotypeâ€byâ€Genotype Interactions Modified by a Third Species in a Plantâ€Insect System. American Naturalist, 2007, 170, 492-499.	1.0	89
40	Mineral surface reactivity and mass transfer in environmental mineralogy. European Journal of Mineralogy, 2007, 19, 297-307.	0.4	11
41	Desulfurization of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene. Environmental Microbiology, 2007, 9, 535-545.	1.8	39
42	Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environmental Pollution, 2006, 144, 228-237.	3.7	120
43	Effect of inoculum pretreatment on survival, activity and catabolic gene expression of Sphingobium yanoikuyae B1 in an aged polycyclic aromatic hydrocarbon-contaminated soil. FEMS Microbiology Ecology, 2006, 58, 364-372.	1.3	28
44	Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 2006, 72, 1083-1089.	1.7	30
45	Importance of Organosulfur Utilization for Survival of Pseudomonas putida in Soil and Rhizosphere. Applied and Environmental Microbiology, 2005, 71, 6571-6577.	1.4	25
46	Succinate Complex Crystal Structures of the \hat{l}_{\pm} -Ketoglutarate-dependent Dioxygenase AtsK. Journal of Biological Chemistry, 2005, 280, 5716-5723.	1.6	32
47	The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany, 2004, 55, 1939-1945.	2.4	229
48	Crystal Structure of the Alkylsulfatase AtsK:Â Insights into the Catalytic Mechanism of the Fe(II) α-Ketoglutarate-Dependent Dioxygenase Superfamilyâ€,‡. Biochemistry, 2004, 43, 3075-3088.	1.2	88
49	Metabolism of Sulphur-Containing Organic Compounds. , 2004, , 323-357.		16
50	The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environmental Microbiology, 2002, 4, 225-237.	1.8	37
51	Bacterial transporters for sulfate and organosulfur compounds. Research in Microbiology, 2001, 152, 279-290.	1.0	94
52	1.3 \tilde{A} Structure of Arylsulfatase from Pseudomonas aeruginosa Establishes the Catalytic Mechanism of Sulfate Ester Cleavage in the Sulfatase Family. Structure, 2001, 9, 483-491.	1.6	177
53	Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiology Reviews, 2000, 24, 135-175.	3.9	176
54	Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiology Reviews, 2000, 24, 135-175.	3.9	295

#	Article	IF	Citations
55	Characterization of a Sulfur-regulated Oxygenative Alkylsulfatase from Pseudomonas putida S-313. Journal of Biological Chemistry, 2000, 275, 31661-31667.	1.6	96
56	The ssu Locus Plays a Key Role in Organosulfur Metabolism in Pseudomonas putidaS-313. Journal of Bacteriology, 2000, 182, 2869-2878.	1.0	75
57	The Sulfur-Regulated Arylsulfatase Gene Cluster of Pseudomonas aeruginosa , a New Member of the cys Regulon. Journal of Bacteriology, 2000, 182, 2055-2058.	1.0	38
58	Pathways of Assimilative Sulfur Metabolism in <i>Pseudomonas putida</i> . Journal of Bacteriology, 1999, 181, 5833-5837.	1.0	89
59	Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response inPseudomonas aeruginosaPAO1. FEBS Journal, 1999, 266, 986-996.	0.2	45
60	Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313. Molecular Microbiology, 1999, 32, 913-926.	1.2	57
61	A Novel Reduced Flavin Mononucleotide-Dependent Methanesulfonate Sulfonatase Encoded by the Sulfur-Regulated <i>msu </i> Operon of <i>Pseudomonas aeruginosa </i> . Journal of Bacteriology, 1999, 181, 1464-1473.	1.0	73
62	Construction of improved plasmid vectors for promoter characterization in Pseudomonas aeruginosaand other Gram-negative bacteria. FEMS Microbiology Letters, 1998, 169, 179-183.	0.7	37
63	Sample handling for proteome analysis. Electrophoresis, 1998, 19, 901-908.	1.3	18
64	Posttranslational Formation of Formylglycine in Prokaryotic Sulfatases by Modification of Either Cysteine or Serine. Journal of Biological Chemistry, 1998, 273, 25560-25564.	1.6	113
65	Characterization of α-Ketoglutarate-dependent Taurine Dioxygenase from Escherichia coli. Journal of Biological Chemistry, 1997, 272, 23031-23036.	1.6	227
66	Probing protein function using a combination of gene knockout and proteome analysis by mass spectrometry. Electrophoresis, 1997, 18, 432-442.	1.3	28
67	Analysis of Global Responses by Protein and Peptide Fingerprinting of Proteins Isolated by Two-Dimensional Gel Electrophoresis. Application to the Sulfate-Starvation Response of Escherichia Coli. FEBS Journal, 1996, 239, 773-781.	0.2	78
68	Desulfonation of aliphatic sulfonates by Pseudomonas aeruginosa PAO. FEMS Microbiology Letters, 1996, 137, 221-225.	0.7	24
69	Purification and Characterization of the Arylsulfatase Synthesized by Pseudomonas aeruginosa PAO During Growth in Sulfate-Free Medium and Cloning of the Arylsulfatase Gene (atsA). FEBS Journal, 1995, 229, 385-394.	0.2	107
70	Purification and Characterization of the Arylsulfatase Synthesized by Pseudomonas aeruginosa PAO During Growth in Sulfate-Free Medium and Cloning of the Arylsulfatase Gene (atsA). FEBS Journal, 1995, 229, 385-394.	0.2	1
71	Desulfonation of Linear Alkylbenzenesulfonate Surfactants and Related Compounds by Bacteria. Applied and Environmental Microbiology, 1994, 60, 2296-2303.	1.4	68
72	Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation, 1991, 2, 53-59.	1.5	51

ARTICLE

To Construction of improved plasmid vectors for promoter characterization in Pseudomonas

aeruginosa and other Gram-negative bacteria., 0, .

2