Takeshi Yabutsuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8191982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite. Materials Science and Engineering C, 2017, 81, 349-358.	7.3	35
2	In vivo and in vitro bioactivity of a "precursor of apatite―treatment on polyetheretherketone. Acta Biomaterialia, 2019, 91, 48-59.	8.3	34
3	Fabrication of Bioactive Fiberâ€reinforced PEEK and MXD6 by Incorporation of Precursor of Apatite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2254-2265.	3.4	25
4	Synthesis and Electrochemical Properties of LATP-LLTO Lithium Ion Conductive Composites. Electrochemistry, 2016, 84, 967-970.	1.4	19
5	Relaxation Analysis of Li _x NiO ₂ and Li _x (NCA)O ₂ in the Deeply Lithium Extracted Region (x ≤0.12). Journal of the Electrochemical Society, 2017, 164, A1514-A1519.	2.9	18
6	Generation of hydroxyapatite patterns by electrophoretic deposition. Journal of Materials Science: Materials in Medicine, 2008, 19, 1419-1424.	3.6	17
7	Effect of Doubled Sandblasting Process and Basic Simulated Body Fluid Treatment on Fabrication of Bioactive Stainless Steels. Materials, 2018, 11, 1334.	2.9	13
8	Effect of local cell reaction at cathode on the performance of nickel metal-hydride battery. Journal of Alloys and Compounds, 2019, 772, 256-262.	5.5	12
9	Chemical transformation of PbO2 due to local cell reaction on the cathode of lead acid battery. Journal of Alloys and Compounds, 2019, 780, 85-89.	5.5	11
10	Relaxation Analysis of LiNi _{0.5} Mn _{1.5} O ₄ 5 V Cathode Material by Means of the Rietveld Refinement. Electrochemistry, 2016, 84, 808-811.	1.4	10
11	Defect Structure and Oxide Ion Conduction of Potassium Ion Substituted CaWO4. Materials, 2018, 11, 1092.	2.9	10
12	α-PbO ₂ Formation on the Cathode of Lead Acid Battery due to the Local Cell Reaction. Journal of the Electrochemical Society, 2016, 163, A3087-A3090.	2.9	9
13	Structural Relaxation of Lix(Ni0.874Co0.090Al0.036)O2 after Lithium Extraction down to x = 0.12. Materials, 2018, 11, 1299.	2.9	9
14	Fabrication of bioactive titanium and its alloys by combination of doubled sandblasting process and alkaline simulated body fluid treatment. Journal of the Ceramic Society of Japan, 2019, 127, 669-677.	1.1	9
15	Role of Magnesium and the Effect of Surface Roughness on the Hydroxyapatite-Forming Ability of Zirconia Induced by Biomimetic Aqueous Solution Treatment. Materials, 2020, 13, 3045.	2.9	9
16	Synthesis and Characterization of LAGP-Based Lithium Ion-Conductive Composites with an LLTO Additive. Journal of Alloys and Compounds, 2021, 853, 157089.	5.5	9
17	Synthesis and Characterization of Lithium-Ion Conductive LATP-LaPO4 Composites Using La2O3 Nano-Powder. Materials, 2021, 14, 3502.	2.9	9
18	Fabrication of Bioactive Apatite Nuclei Precipitated Titanium by Using Electromagnetic Induction Heating. Bioceramics Development and Applications, 2010, 1, 1-3.	0.3	9

#	Article	IF	CITATIONS
19	Fabrication of Encapsulated Ag Microsphere with Hydroxyapatite for Sustained-Release. Key Engineering Materials, 2007, 361-363, 1199-1202.	0.4	8
20	Fabrication of Encapsulated Silicagel Microsphere with Hydroxyapatite for Sustained-Release. Key Engineering Materials, 0, 396-398, 519-522.	0.4	8
21	Development of novel bioactive composites by electrophoretic deposition. Materials Science and Engineering C, 2009, 29, 1584-1588.	7.3	8
22	Electrochemical properties of Cs-substituted CaWO ₄ and BaWO ₄ oxide ion conductors. Journal of the Ceramic Society of Japan, 2016, 124, 819-822.	1.1	8
23	Fabrication of Bioactive Co-Cr-Mo-W Alloy by Using Doubled Sandblasting Process and Apatite Nuclei Treatment. Transactions of the Materials Research Society of Japan, 2018, 43, 143-147.	0.2	8
24	Development of Bioactive Titanium-Apatite Nuclei Composite. Key Engineering Materials, 2008, 361-363, 709-712.	0.4	7
25	Tracer diffusion coefficients measurements on LaPO4-dispersed LATP by means of neutron radiography. Solid State Ionics, 2022, 377, 115873.	2.7	7
26	Fabrication of Magnetic Hydroxyapatite Microcapsule for Protein Collection. Key Engineering Materials, 2013, 587, 160-164.	0.4	6
27	Enzyme Immobilization by Using Apatite Microcapsules with Magnetic Properties. Key Engineering Materials, 0, 696, 259-264.	0.4	6
28	Biomimetic Method for Production of Magnetic Hydroxyapatite Microcapsules for Enzyme Immobilization. Transactions of the Materials Research Society of Japan, 2018, 43, 153-156.	0.2	6
29	Relaxation stage analysis of lithium inserted graphite. Journal of Physics and Chemistry of Solids, 2020, 142, 109440.	4.0	6
30	Surface Modification of Carbon Fiber-Polyetheretherketone Composite to Impart Bioactivity by Using Apatite Nuclei. Materials, 2021, 14, 6691.	2.9	6
31	Fabrication of Bioactive Apatite Nuclei-Precipitated Titanium Alloys by Using Sandblasting. Key Engineering Materials, 0, 529-530, 553-558.	0.4	5
32	Fabrication of Bioactive Apatite Nuclei Precipitated Polylactic Acid by Using Sandblasting Process. Key Engineering Materials, 2013, 587, 165-170.	0.4	5
33	Fabrication of Bioactive Apatite Nuclei Precipitated Ti-15Mo-5Zr-3Al Alloy by Using Doubled Sandblasting Process. Key Engineering Materials, 2014, 631, 231-235.	0.4	5
34	Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone Composite with Biological and Electrical Properties. Coatings, 2020, 10, 191.	2.6	5
35	Synthesis and anode properties of corundum-type structured (Fe 2 O 3) 1-x (Al 2 O 3) x solid solutions in the whole compositional range. Solid State Ionics, 2017, 313, 1-6.	2.7	4
36	Relaxation Analysis of Li _x Ni _{0.8} Co _{0.1} Mn _{0.1} O ₂ after Lithium Extraction to High-Voltage Region (x ≤0.12). Journal of the Electrochemical Society, 2021, 168, 010518.	2.9	4

#	Article	IF	CITATIONS
37	Development of Bioactive Polyethylene-Apatite Nuclei Composite. Key Engineering Materials, 2007, 330-332, 467-470.	0.4	3
38	Fabrication of Bioactive Apatite Nuclei-Precipitated Composites. Key Engineering Materials, 0, 493-494, 545-550.	0.4	3
39	THE EFFECTS OF SBF CONDITIONS ON ENCAPSULATION OF AGAROSE GEL WITH HYDROXYAPATITE MICROCAPSULES. Phosphorus Research Bulletin, 2016, 31, 9-14.	0.6	3
40	Fabrication of Hydroxyapatite Microcapsules for Controlled Release of Hydrophobic Drug. Key Engineering Materials, 0, 720, 12-16.	0.4	3
41	Development of Bioactive PEEK by the Function of Apatite Nuclei. Key Engineering Materials, 0, 696, 145-150.	0.4	3
42	Bioactivity Treatments for Zirconium and Ti-6Al-4V Alloy by the Function of Apatite Nuclei. Key Engineering Materials, 0, 720, 175-179.	0.4	3
43	EFFECTS OF SANDBLASTING CONDITIONS IN PREPARATION OF BIOACTIVE STAINLESS STEELS BY THE FUNCTION OF APATITE NUCLEI. Phosphorus Research Bulletin, 2016, 31, 15-19.	0.6	3
44	INVESTIGATION OF EFFECTIVE PROCEDURES IN FABRICATION OF BIOACTIVE PEEK USING THE FUNCTION OF APATITE NUCLEI. Phosphorus Research Bulletin, 2016, 31, 31-37.	0.6	3
45	Low temperature phase transition phenomena in Ba- and Pb-substituted La2Mo2O9 oxide ion conductors. Solid State Ionics, 2020, 354, 115405.	2.7	3
46	Immobilization and collection of enzymes by hydroxyapatite/maghemite composite particles with magnetism. Journal of the Ceramic Society of Japan, 2020, 128, 883-889.	1.1	3
47	Development of bioactive zirconium–tin alloy by combination of micropores formation and apatite nuclei deposition. IET Nanobiotechnology, 2020, 14, 701-706.	3.8	3
48	Improvement of hydroxyapatite formation ability of titaniumâ€based alloys by combination of acid etching and apatite nuclei precipitation. IET Nanobiotechnology, 2020, 14, 688-694.	3.8	3
49	Development of Bioactive Organic Polymer Composite by Electrophoretic Deposition. Key Engineering Materials, 2006, 309-311, 1177-1180.	0.4	2
50	Formation of Apatite Pattern by Electrophoretic Deposition of Apatite Nuclei. Key Engineering Materials, 2007, 330-332, 3-6.	0.4	2
51	Fabrication of Hydroxyapatite Microcapsule Containing Vitamin B ₁₂ for Sustained-Release. Key Engineering Materials, 0, 631, 326-331.	0.4	2
52	Fabrication of Bioactive Fiber Reinforced Polyetheretherketone by the Function of Apatite Nuclei. Key Engineering Materials, 0, 720, 246-251.	0.4	2
53	Fabrication of Bioactive Stainless Steel by the Function of Apatite Nuclei. Key Engineering Materials, 0, 696, 151-156.	0.4	2
54	Apatite Formation Ability of Bioactive Bearing Grade Polyetheretherketone Fabricated by Incorporation of Apatite Nuclei. Key Engineering Materials, 0, 758, 69-74.	0.4	2

#	Article	IF	CITATIONS
55	Biomimetic Crystalline Calcium Phosphate Coatings on Bioabsorbable Magnesium Alloy. Key Engineering Materials, 2017, 758, 81-85.	0.4	2
56	Structural Relaxation of Li _x Ni _{0.874} Co _{0.090} Al _{0.036} O ₂ after Lithium Extraction down to (x a‰¤0.12). Journal of the Electrochemical Society, 2019, 166, A5153-A5156.	2.9	2
57	Fabrication of Encapsulated Ag Microsphere with Hydroxyapatite for Sustained-Release. Key Engineering Materials, 0, , 1199-1202.	0.4	2
58	Impartation of hydroxyapatite formation ability to ultraâ€high molecular weight polyethylene by deposition of apatite nuclei. IET Nanobiotechnology, 2020, 14, 673-679.	3.8	2
59	A COMPARITIVE IN VITRO BIOACTIVY EVALUATION OF POLYVINYLIDENE FLUORIDE AND POLYCAPROLACTONE INCORPORATED WITH AMORPHOUS CALCIUM PHOSPHATE PARTICLES. Phosphorus Research Bulletin, 2020, 36, 15-22.	0.6	2
60	Relaxation Analysis of Graphite Anode Materials after Charge-Discharge Cycles. Electrochemistry, 2020, 88, 434-436.	1.4	2
61	Improved cathode performance and relaxation properties of LiMn ₂ O ₄ prepared by optimized ball-milling with single-step sintering. Journal of the Ceramic Society of Japan, 2021, 129, 744-752.	1.1	2
62	Dependence property of isoelectric points and pH environment on enzyme immobilization on maghemite/hydroxyapatite composite particles. Journal of the Ceramic Society of Japan, 2022, 130, 74-80.	1.1	2
63	Lead acid battery with high resistance to overâ€discharge using graphite based materials as cathode current collector. Nano Select, 0, , .	3.7	2
64	Apatite Pattern Formation by Electrophoretic Deposition Transcribing Resist Pattern. Key Engineering Materials, 2006, 309-311, 659-662.	0.4	1
65	Fabrication of Bioactive Polylactic Acid Composite Formed by 3D Printer. Key Engineering Materials, 0, 631, 160-165.	0.4	1
66	Fabrication of Bioactive Cobalt-Chromium Alloys by Incorporation of Apatite Nuclei. Key Engineering Materials, 2016, 720, 180-184.	0.4	1
67	Fabrication of Bioactive Glass Fiber Reinforced Polyamide with High Mechanical Performance by the Function of Apatite Nuclei. Key Engineering Materials, 2016, 720, 241-245.	0.4	1
68	Development of Bioactive Ti-15Mo-5Zr-3Al Alloy by Incorporation of Apatite Nuclei. Key Engineering Materials, 2017, 758, 75-80.	0.4	1
69	Bioactivity Assessment of Apatite Nuclei-PVDF Composite Thin Films. Key Engineering Materials, 2018, 782, 78-83.	0.4	1
70	Bioactivity Treatment to Polylactic Acid Fabric Cloth and Foam by Precipitation of Apatite Nuclei. Transactions of the Materials Research Society of Japan, 2018, 43, 139-142.	0.2	1
71	Biomimetic Porous Bone-Like Apatite Coatings on Metals, Organic Polymers and Microparticles. , 2018, ,		1
72	Effect of Crystalline Calcium Phosphate Coatings Prepared in an Aqueous Solution on Corrosion Resistance of Bioabsorbable Magnesium Alloy. Key Engineering Materials, 2018, 782, 158-164.	0.4	1

#	Article	IF	CITATIONS
73	Changes in Surface Condition during Fabrication Process of Bioactive Apatite Nuclei Incorporated PEEK. Key Engineering Materials, 0, 782, 182-188.	0.4	1
74	Apatite-Forming Ability of Hydrophobicized Cellulose Nanofiber Imparted by Combination with Apatite Nuclei. Key Engineering Materials, 2018, 782, 65-71.	0.4	1
75	Effect of Apatite Nuclei on Apatite-Forming Ability of Cellulose Nanofiber. Key Engineering Materials, 2019, 829, 114-121.	0.4	1
76	Relaxation analysis of NCAs in high-voltage region and effect of cobalt content. Journal of Electroanalytical Chemistry, 2020, 878, 114566.	3.8	1
77	Development of Bioactive Polyethylene-Apatite Nuclei Composite. Key Engineering Materials, 0, , 467-470.	0.4	1
78	Electrochemical Properties of Cs and La Co-doped CaWO ₄ Oxide Ion Conductor. Electrochemistry, 2022, 90, 027004-027004.	1.4	1
79	Fabrication of Bioactive Organic Polymer by Using Apatite Nuclei-Contained Inorganic Binder. Key Engineering Materials, 0, 396-398, 433-436.	0.4	Ο
80	Fabrication of Bone-Like Apatite-Phosphatidylcholine Composite Thin Film by Biomimetic Method. Key Engineering Materials, 0, 696, 40-44.	0.4	0
81	Effect of Isoelectric Point on Enzyme Immobilization Property of Magnetic Apatite Microcapsules Encapsulating Maghemite. Key Engineering Materials, 0, 758, 178-183.	0.4	Ο
82	Fabrication of Levothyroxine Particles Encapsulated with Apatite. Key Engineering Materials, 2017, 758, 172-177.	0.4	0
83	Bioactivity Treatment for Co-Cr-Mo Alloy by Precipitation of Low Crystalline Calcium Phosphate Using Simulated Body Fluid with Alkalinized Condition. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 211-214.	0.2	Ο
84	Fabrication of Bioactive Polycaprolactone by Incorporation of Apatite Nuclei. Key Engineering Materials, 0, 782, 91-97.	0.4	0
85	Enzyme Immobilization Behavior on the Surface of Hydroxyapatite Capsules under Alkaline Condition. Key Engineering Materials, 2018, 782, 21-26.	0.4	Ο
86	Effect of Oxygen Plasma Treatment on Fabrication of Bioactive Ultrahigh Molecular Weight Polyethylene Composite. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 207-210.	0.2	0
87	Development of Bioactive Apatite Nuclei-Precipitated Ti-12Ta-9Nb-6Zr-3V-O Alloy. Key Engineering Materials, 2019, 829, 125-130.	0.4	Ο
88	Fabrication of Bioactive Zirconia by Doubled Sandblasting Process and Incorporation of Apatite Nuclei. Key Engineering Materials, 2019, 829, 151-156.	0.4	0
89	Formation and Phase Transition of Crystalline Calcium Phosphate on Bioabsorbable Magnesium Alloy under Alkali Condition. Key Engineering Materials, 0, 829, 3-8.	0.4	0
90	TEM Observation of LaPO ₄ -Dispersed LATP Lithium-Ion Conductor. Electrochemistry, 2021, 89, 480-483.	1.4	0

#	Article	IF	CITATIONS
91	Effective Procedure of Bioactivity Treatment to Bearing Grade PEEK by Incorporation of Apatite Nuclei. Transactions of the Materials Research Society of Japan, 2018, 43, 149-152.	0.2	0
92	Materials Design for Bioactive Function by Surface Modification with Apatite Nuclei. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 252-257.	0.2	0
93	Impartation of apatiteâ€forming ability to chitosan nanofibres by using apatite nuclei. IET Nanobiotechnology, 2020, 14, 668-672.	3.8	0
94	Evaluation of calcium phosphate coating on biodegradable Mg–Al–Zn–Ca alloy formed under ordinary conditions on temperature and pressure. Journal of the Ceramic Society of Japan, 2022, 130, 81-87.	1.1	0