Hyunhyub Ko

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8191908/hyunhyub-ko-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 130
 9,994
 49
 99

 papers
 citations
 h-index
 g-index

 138
 11,636
 12.1
 6.51

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
130	Flexible Pyroresistive Graphene Composites for Artificial Thermosensation Differentiating Materials and Solvent Types <i>ACS Nano</i> , 2022 ,	16.7	2
129	Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization <i>Advanced Science</i> , 2022 , e2105423	13.6	8
128	Anisotropic silver nanowire dielectric composites for self-healable triboelectric sensors with multi-directional tactile sensitivity. <i>Nano Energy</i> , 2022 , 92, 106704	17.1	2
127	Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface <i>Science Advances</i> , 2022 , 8, eabj9220	14.3	5
126	Interdigitated Three-Dimensional Heterogeneous Nanocomposites for High-Performance Mechanochromic Smart Membranes. <i>ACS Nano</i> , 2021 ,	16.7	4
125	Bioinspired Gradient Conductivity and Stiffness for Ultrasensitive Electronic Skins. <i>ACS Nano</i> , 2021 , 15, 1795-1804	16.7	38
124	A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine. <i>Advanced Science</i> , 2021 , 8, 2005010	13.6	15
123	Electronic Textiles Based on Highly Conducting Poly(vinyl alcohol)/Carbon Nanotube/Silver Nanobelt Hybrid Fibers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 31051-31058	9.5	7
122	Highly Stretchable, Conductive Polymer Electrodes with a Mixed AgPdCu and PTFE Network Interlayer for Stretchable Electronics. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001500	4.6	4
121	High-Performance Triboelectric Devices via Dielectric Polarization: A Review. <i>Nanoscale Research Letters</i> , 2021 , 16, 35	5	18
120	Stretchable Electroluminescent Devices: Highly Stretchable, Conductive Polymer Electrodes with a Mixed AgPdCu and PTFE Network Interlayer for Stretchable Electronics (Adv. Mater. Interfaces 3/2021). Advanced Materials Interfaces, 2021 , 8, 2170015	4.6	
119	Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. <i>Nano Energy</i> , 2021 , 86, 106083	17.1	17
118	Polyvinylidene fluoride (PVDF)/cellulose nanocrystal (CNC) nanocomposite fiber and triboelectric textile sensors. <i>Composites Part B: Engineering</i> , 2021 , 223, 109098	10	9
117	Engineering crystal phase of Nylon-11 films for ferroelectric device and piezoelectric sensor. <i>Nano Energy</i> , 2021 , 88, 106244	17.1	3
116	MXene-enhanced Ephase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. <i>Nano Energy</i> , 2021 , 89, 106409	17.1	13
115	Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays <i>ACS Nano</i> , 2021 ,	16.7	14
114	Catalytic effects of zirconium on scratch-healing and mechanical properties of urethane Ecrylate automotive clearcoat. <i>Progress in Organic Coatings</i> , 2020 , 148, 105813	4.8	1

(2019-2020)

113	Ferroelectric Multilayer Nanocomposites with Polarization and Stress Concentration Structures for Enhanced Triboelectric Performances. <i>ACS Nano</i> , 2020 , 14, 7101-7110	16.7	32
112	Soft and ion-conducting hydrogel artificial tongue for astringency perception. <i>Science Advances</i> , 2020 , 6, eaba5785	14.3	27
111	High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices. <i>ACS Applied Materials & Devices</i> , 2020 , 12, 32154-32162	9.5	19
110	Self-powered triboelectric/pyroelectric multimodal sensors with enhanced performances and decoupled multiple stimuli. <i>Nano Energy</i> , 2020 , 72, 104671	17.1	24
109	Flexible high-performance graphene hybrid photodetectors functionalized with gold nanostars and perovskites. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	5
10	8 Transfer Printing of Electronic Functions on Arbitrary Complex Surfaces. <i>ACS Nano</i> , 2020 , 14, 12-20	16.7	19
10	Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios. <i>Nano Letters</i> , 2020 , 20, 441-448	11.5	37
100	Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. <i>Materials Horizons</i> , 2020 , 7, 3258-3265	14.4	20
10	Highly Transparent, Flexible, and Self-Healable Thermoacoustic Loudspeakers. <i>ACS Applied Materials & ACS Applied</i> Materials &	9.5	7
102	Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(hindered Urea) Networks. <i>ACS Nano</i> , 2020 , 14, 11442-11451	16.7	24
10	Tailored Poly(vinylidene fluoridetrifluoroethylene) Crystal Orientation for a Triboelectric Nanogenerator through Epitaxial Growth on a Chitin Nanofiber Film. <i>Nano Letters</i> , 2020 , 20, 6651-6659	11.5	16
102	Binary Spiky/Spherical Nanoparticle Films with Hierarchical Micro/Nanostructures for High-Performance Flexible Pressure Sensors. <i>ACS Applied Materials & Discourse Sensors</i> , 12, 58403-58	8 4 71	8
10	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. <i>Advanced Functional Materials</i> , 2020 , 30, 1904523	15.6	126
100	Enhanced thermomechanical property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer. <i>Polymer Chemistry</i> , 2020 , 11, 3701-3708	4.9	5
99	Highly Stretchable Sound-in-Display Electronics Based on Strain-Insensitive Metallic Nanonetworks. <i>Advanced Science</i> , 2020 , 8, 2001647	13.6	11
98	Rechargeable Na/Ni batteries based on the Ni(OH)2/NiOOH redox couple with high energy density and good cycling performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1564-1573	13	27
97	Spontaneous capillary breakup of suspended gradient polymer stripes into spatially ordered dot arrays. <i>Applied Surface Science</i> , 2019 , 475, 1003-1009	6.7	4
96	Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1107-1114	13	59

95	Gate-Tunable and Programmable n-InGaAs/Black Phosphorus Heterojunction Diodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 23382-23391	9.5	5
94	High-Performance Hybrid Photovoltaics with Efficient Interfacial Contacts between Vertically Aligned ZnO Nanowire Arrays and Organic Semiconductors. <i>ACS Omega</i> , 2019 , 4, 9996-10002	3.9	8
93	A Hierarchical Nanoparticle-in-Micropore Architecture for Enhanced Mechanosensitivity and Stretchability in Mechanochromic Electronic Skins. <i>Advanced Materials</i> , 2019 , 31, e1808148	24	75
92	Effect of Interfacial Interaction on the Conformational Variation of Poly(vinylidene fluoride) (PVDF) Chains in PVDF/Graphene Oxide (GO) Nanocomposite Fibers and Corresponding Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13665-13675	9.5	28
91	Solution-Processable, High-Performance Flexible Electroluminescent Devices Based on High-k Nanodielectrics. <i>Advanced Functional Materials</i> , 2019 , 29, 1904377	15.6	14
90	A Multi-Functional Physiological Hybrid-Sensing E-Skin Integrated Interface for Wearable IoT Applications. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2019 , 13, 1535-1544	5.1	9
89	Feasibility of using hollow double walled Mn2O3 nanocubes for hybrid Na-air battery. <i>Chemical Engineering Journal</i> , 2019 , 360, 415-422	14.7	24
88	Flexible Health-Monitoring Devices/Sensors 2018 , 287-321		
87	Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. <i>NPG Asia Materials</i> , 2018 , 10, 163-176	10.3	95
86	Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. <i>ACS Nano</i> , 2018 , 12, 3964-3974	16.7	138
85	Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range. <i>ACS Nano</i> , 2018 , 12, 4045-4054	16.7	212
84	A Flexible High-Performance Photoimaging Device Based on Bioinspired Hierarchical Multiple-Patterned Plasmonic Nanostructures. <i>Small</i> , 2018 , 14, e1703890	11	13
83	Bioinspired Polydopamine and Composites for Biomedical Applications 2018 , 1-29		1
82	Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. <i>Nano Energy</i> , 2018 , 48, 275-283	17.1	66
81	Water-adaptive and repeatable self-healing polymers bearing bulky urea bonds. <i>Polymer Chemistry</i> , 2018 , 9, 11-19	4.9	29
80	Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. <i>Science Advances</i> , 2018 , 4, eaas8772	14.3	98
79	Molecular structure engineering of dielectric fluorinated polymers for enhanced performances of triboelectric nanogenerators. <i>Nano Energy</i> , 2018 , 53, 37-45	17.1	29
78	Activity-Durability Coincidence of Oxygen Evolution Reaction in the Presence of Carbon Corrosion: Case Study of MnCo2O4 Spinel with Carbon Black. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9566-9571	8.3	38

77	Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22879-22888	13	50
76	Binary N,S-doped carbon nanospheres from bio-inspired artificial melanosomes: A route to efficient air electrodes for seawater batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24459-24467	13	39
75	Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. <i>NPG Asia Materials</i> , 2018 , 10, 912-922	10.3	81
74	Large-Area, Solution-Processed, Hierarchical MAPbI3 Nanoribbon Arrays for Self-Powered Flexible Photodetectors. <i>Advanced Optical Materials</i> , 2018 , 6, 1800615	8.1	29
73	Wearable and flexible sensors for user-interactive health-monitoring devices. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4043-4064	7.3	173
72	Nanoparticle-Enhanced Silver-Nanowire Plasmonic Electrodes for High-Performance Organic Optoelectronic Devices. <i>Advanced Materials</i> , 2018 , 30, e1800659	24	41
71	A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/EMoO3 hybrid heterostructured nanoflowers. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15320-15329	13	63
70	Smart Actuators and Adhesives for Reconfigurable Matter. <i>Accounts of Chemical Research</i> , 2017 , 50, 69	1 <i>-3</i> 74032	109
69	Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens. <i>ACS Nano</i> , 2017 , 11, 4346-4357	16.7	213
68	Redox-Additive-Enhanced High Capacitance Supercapacitors Based on Co2P2O7 Nanosheets. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700059	4.6	61
67	Mechanical Properties of Poly(dopamine)-Coated Graphene Oxide and Poly(vinyl alcohol) Composite Fibers Coated with Reduced Graphene Oxide and Their Use for Piezoresistive Sensing. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600382	3.1	8
66	Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous NaBir battery. Journal of Materials Chemistry A, 2017 , 5, 2037-2044	13	105
65	Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries. <i>Electrochimica Acta</i> , 2017 , 257, 328	-363 / 4	41
64	Large-Area, Highly Sensitive SERS Substrates with Silver Nanowire Thin Films Coated by Microliter-Scale Solution Process. <i>Nanoscale Research Letters</i> , 2017 , 12, 581	5	5
63	A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications. <i>Sensors</i> , 2017 , 18,	3.8	24
62	Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film. <i>ACS Applied Materials & Discounty of the Page 1</i> , 9, 4408	3 8-4 40	937
61	Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. <i>Nano Research</i> , 2017 , 10, 22-36	10	47
60	High-Performance MoS/CuO Nanosheet-on-One-Dimensional Heterojunction Photodetectors. <i>ACS Applied Materials & District Applied & District Applied Materials & District Applied & District Applie</i>	9.5	49

59	InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26105-26111	9.5	23
58	Boosting the Performance of Organic Optoelectronic Devices Using Multiple-Patterned Plasmonic Nanostructures. <i>Advanced Materials</i> , 2016 , 28, 4976-82	24	30
57	Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 1264-1	2 35 94	113
56	Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery. <i>Journal of Power Sources</i> , 2016 , 311, 29-34	8.9	64
55	Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 634-42	9.5	49
54	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2999-3018	7.3	90
53	Octopus-Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes. <i>Advanced Materials</i> , 2016 , 28, 7457-65	24	112
52	Hierarchical urchin-shaped \(\text{MnO2} \) on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na\(\text{Bir} \) battery. \(\text{NPG Asia Materials}, \(\text{2016}, 8, e294-e294 \)	10.3	82
51	Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2319-2325	7.1	33
50	Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21553-21561	13	130
49	pH-tunable plasmonic properties of Ag nanoparticle cores in block copolymer micelle arrays on Ag films. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11730-11735	13	8
48	Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano, 2015, 9, 3421-7	16.7	187
47	Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins. <i>Advanced Functional Materials</i> , 2015 , 25, 2841-2849	15.6	244
46	Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. <i>Science Advances</i> , 2015 , 1, e1500661	14.3	485
45	Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. <i>Nano Letters</i> , 2015 , 15, 7933-42	11.5	165
44	Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. <i>ACS Applied Materials & District Surfaces</i> , 2015 , 7, 26421-9	9.5	27
43	Electronic Skin: Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins (Adv. Funct. Mater. 19/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 2840-2840	15.6	4
42	Piezoresistive Tactile Sensor Discriminating Multidirectional Forces. <i>Sensors</i> , 2015 , 15, 25463-73	3.8	37

(2010-2014)

41	Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. <i>Nanoscale</i> , 2014 , 6, 616-23	7.7	113
40	Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. <i>ACS Nano</i> , 2014 , 8, 12020-9	16.7	398
39	Vacuum-induced wrinkle arrays of InGaAs semiconductor nanomembranes on polydimethylsiloxane microwell arrays. <i>ACS Nano</i> , 2014 , 8, 3080-7	16.7	23
38	An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. <i>Nanoscale</i> , 2014 , 6, 9734-41	7.7	95
37	Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. <i>ACS Nano</i> , 2014 , 8, 4689-97	16.7	561
36	Spin injection and detection in In0.53Ga0.47As nanomembrane channels transferred onto Si substrates. <i>Applied Physics Express</i> , 2014 , 7, 093004	2.4	2
35	Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays. <i>BioNanoScience</i> , 2014 , 4, 349-355	3.4	21
34	Gate-controlled spin-orbit interaction in inas high-electron mobility transistor layers epitaxially transferred onto Si substrates. <i>ACS Nano</i> , 2013 , 7, 9106-14	16.7	10
33	Multifunctional, flexible electronic systems based on engineered nanostructured materials. <i>Nanotechnology</i> , 2012 , 23, 344001	3.4	32
32	Raman Markers from Silver Nanowire Crossbars. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 4387-4394	3.8	29
31	Nanoscale semiconductor "X" on substrate "Y"processes, devices, and applications. <i>Advanced Materials</i> , 2011 , 23, 3115-27	24	39
30	Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. <i>Nano Letters</i> , 2011 , 11, 3239-44	11.5	411
29	Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. <i>Nature</i> , 2010 , 468, 286-9	50.4	327
28	Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. <i>Nature Materials</i> , 2010 , 9, 82	1 :6 7	1013
27	Hierarchical polymer micropillar arrays decorated with ZnO nanowires. <i>Nanotechnology</i> , 2010 , 21, 2953	0 5 .4	30
26	Metal-catalyzed crystallization of amorphous carbon to graphene. <i>Applied Physics Letters</i> , 2010 , 96, 063	131. p	208
25	Thermoresponsive Chemical Connectors Based on Hybrid Nanowire Forests. <i>Angewandte Chemie</i> , 2010 , 122, 626-629	3.6	2
24	Thermoresponsive chemical connectors based on hybrid nanowire forests. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 616-9	16.4	25

23	Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small, 2010, 6, 22-6	11	41
22	Hybrid core-multishell nanowire forests for electrical connector applications. <i>Applied Physics Letters</i> , 2009 , 94, 263110	3.4	21
21	Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors. <i>Advanced Functional Materials</i> , 2009 , 19, 3098-3102	15.6	29
20	Porous substrates for label-free molecular level detection of nonresonant organic molecules. <i>ACS Nano</i> , 2009 , 3, 181-8	16.7	176
19	Nanoporous membranes with mixed nanoclusters for Raman-based label-free monitoring of peroxide compounds. <i>Analytical Chemistry</i> , 2009 , 81, 5740-8	7.8	61
18	Hybrid core-shell nanowire forests as self-selective chemical connectors. <i>Nano Letters</i> , 2009 , 9, 2054-8	11.5	56
17	Surface treatment of MWCNT array and its polymer composites for TIM application 2008,		1
16	Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. <i>Small</i> , 2008 , 4, 1980-4	11	162
15	Nanostructured surfaces and assemblies as SERS media. <i>Small</i> , 2008 , 4, 1576-99	11	668
14	Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings. <i>Advanced Functional Materials</i> , 2008 , 18, 2114-2122	15.6	73
13	Bimetallic Nanocobs: Decorating Silver Nanowires with Gold Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 1544-1549	24	121
12	Bioenabled Surface-Mediated Growth of Titania Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 3274-327	924	59
11	Freestanding 2D Arrays of Silver Nanorods. <i>Advanced Materials</i> , 2006 , 18, 2895-2899	24	31
10	Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. <i>Nano Letters</i> , 2006 , 6, 1443-8	11.5	138
9	Encapsulating Nanoparticle Arrays into Layer-by-layer Multilayers by Capillary Transfer Lithography. <i>Chemistry of Materials</i> , 2005 , 17, 5489-5497	9.6	59
8	Carbon Nanotube Arrays Encapsulated into Freely Suspended Flexible Films. <i>Chemistry of Materials</i> , 2005 , 17, 2490-2493	9.6	42
7	Strain-Sensitive Raman Modes of Carbon Nanotubes in Deflecting Freely Suspended Nanomembranes. <i>Advanced Materials</i> , 2005 , 17, 2127-2131	24	59
6	High-resolution Raman microscopy of curled carbon nanotubes. <i>Applied Physics Letters</i> , 2004 , 85, 2598-	2 <u>€</u> .40	36

LIST OF PUBLICATIONS

5	Combing and Bending of Carbon Nanotube Arrays with Confined Microfluidic Flow on Patterned Surfaces. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 4385-4393	3.4	76
4	Nanotube surface arrays: weaving, bending, and assembling on patterned silicon. <i>Physical Review Letters</i> , 2004 , 92, 065502	7.4	109
3	Miniaturization of Josephson logic circuits. <i>IEEE Transactions on Magnetics</i> , 1985 , 21, 725-728	2	2
2	A high-speed analog-to-digital converter using Josephson self-gating-AND comparators. <i>IEEE Transactions on Magnetics</i> , 1985 , 21, 200-203	2	20
1	Nanostructured Conductors for Flexible Electronics395-412		1