Michael G Jonz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8191685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (<i>Carassius) Tj ETQq1</i>	1 0.78431 1.7	l 4 rgBT /Over
2	Goldfish and crucian carp are natural models of anoxia tolerance in the retina. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2022, 270, 111244.	1.8	3
3	Single-cell transcriptomic analysis of neuroepithelial cells and other cell types of the gills of zebrafish (Danio rerio) exposed to hypoxia. Scientific Reports, 2022, 12, .	3.3	22
4	Retinal horizontal cells of goldfish (<scp><i>Carassius auratus</i></scp>) display subtypeâ€specific differences in spontaneous action potentials in situ. Journal of Comparative Neurology, 2021, 529, 1756-1767.	1.6	3
5	Identification of oxygen-sensitive neuroepithelial cells through an endogenous reporter gene in larval and adult transgenic zebrafish. Cell and Tissue Research, 2021, 384, 35-47.	2.9	11
6	The development of the O2-sensing system in an amphibious fish: consequences of variation in environmental O2 levels. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 681-699.	1,5	5
7	Replacement of mitochondrion-rich cells during regeneration of the gills and opercular epithelium in zebrafish (Danio rerio). Acta Histochemica, 2021, 123, 151738.	1.8	4
8	Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (<i>Carassius auratus</i>). Journal of Experimental Biology, 2021, 224, .	1.7	7
9	Regeneration of the gill filaments and replacement of serotonergic neuroepithelial cells in adult zebrafish (Danio rerio). Respiratory Physiology and Neurobiology, 2020, 274, 103366.	1.6	12
10	A comparative perspective on lung and gill regeneration. Journal of Experimental Biology, 2020, 223, .	1.7	12
11	Action Potential Activity and Membrane Structure in Neurons of the Goldfish Retina Undergo Seasonal Changes. Biophysical Journal, 2020, 118, 457a.	0.5	0
12	Unfolding the Mysteries of Oxygen Sensing ―A Comprehensive Analysis of the Hypoxic Response in Zebrafish Gills One Cell at a Time via Single Cell RNA Sequencing. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	Spontaneous action potentials in retinal horizontal cells of goldfish (<i>Carassius auratus</i>) are dependent upon L-type Ca ²⁺ channels and ryanodine receptors. Journal of Neurophysiology, 2019, 122, 2284-2293.	1.8	9
14	Hydrogen sulphide toxicity and the importance of amphibious behaviour in a mangrove fish inhabiting sulphide-rich habitats. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 223-235.	1.5	20
15	Characterization of Ca 2+ â€Based Action Potentials in Horizontal Cells in the Goldfish (Carassius) Tj ETQq1 1 (0.784314 0.5	rgBT /Overlac
16	Oxygen-sensitive Neuroepithelial Cells in the Gills of Aquatic Vertebrates. , 2019, , 1-30.		2
17	Insights into the evolution of polymodal chemoreceptors. Acta Histochemica, 2018, 120, 623-629.	1.8	20
18	Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. Journal of Neurophysiology, 2017, 117, 523-536.	1.8	9

MICHAEL G JONZ

#	Article	IF	CITATIONS
19	Distribution and morphology of cholinergic cells in the branchial epithelium of zebrafish (Danio) Tj ETQq1 1 0.7	843 <u>1</u> 4 rgE	BT /Qyerlock 1
20	Mitogenic action of hypoxia upon cutaneous neuroepithelial cells in developing zebrafish. Developmental Neurobiology, 2017, 77, 789-801.	3.0	4
21	Characterization of ion channels and O ₂ sensitivity in gill neuroepithelial cells of the anoxia-tolerant goldfish (<i>Carassius auratus</i>). Journal of Neurophysiology, 2017, 118, 3014-3023.	1.8	16
22	Purinergic and adenosine receptors contribute to hypoxic hyperventilation in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 214, 50-57.	1.8	10
23	Distribution and chronotropic effects of serotonin in the zebrafish heart. Autonomic Neuroscience: Basic and Clinical, 2017, 206, 43-50.	2.8	16
24	Sensing and surviving hypoxia in vertebrates. Annals of the New York Academy of Sciences, 2016, 1365, 43-58.	3.8	68
25	Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen. PLoS ONE, 2016, 11, e0154261.	2.5	16
26	Peripheral chemoreceptors in fish: A brief history and a look ahead. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 186, 27-38.	1.8	37
27	Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia. Journal of Experimental Biology, 2015, 218, 1777-86.	1.7	32
28	Hypercapnia and low pH induce neuroepithelial cell proliferation and emersion behaviour in the amphibious fish Kryptolebias marmoratus. Journal of Experimental Biology, 2015, 218, 2987-90.	1.7	16
29	Extracellular H+ induces Ca2+ signals in respiratory chemoreceptors of zebrafish. Pflugers Archiv European Journal of Physiology, 2015, 467, 399-413.	2.8	27
30	Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish. Journal of Experimental Biology, 2013, 216, 869-80.	1.7	33
31	Expression of <i>sall4</i> in taste buds of zebrafish. Developmental Neurobiology, 2013, 73, 543-558.	3.0	12
32	Serotonergic neuroepithelial cells of the skin in developing zebrafish: morphology, innervation and oxygen-sensitive properties. Journal of Experimental Biology, 2012, 215, 3881-94.	1.7	44
33	Functional prediction and physiological characterization of a novel short trans-membrane protein 1 as a subunit of mitochondrial respiratory complexes. Physiological Genomics, 2012, 44, 1133-1140.	2.3	16
34	CO2 Signaling in Chemosensory Neuroepithelial Cells of the Zebrafish Gill Filaments: Role of Intracellular Ca2+ and pH. Advances in Experimental Medicine and Biology, 2012, 758, 143-148.	1.6	12
35	Oxygen Sensitivity of Gill Neuroepithelial Cells in the Anoxia-Tolerant Goldfish. Advances in Experimental Medicine and Biology, 2012, 758, 167-172.	1.6	6
36	Neuroepithelial cells of the gill and their role in oxygen sensing. Respiratory Physiology and Neurobiology, 2012, 184, 301-308.	1.6	51

MICHAEL G JONZ

#	Article	IF	CITATIONS
37	Confocal imaging of Merkel-like basal cells in the taste buds of zebrafish. Acta Histochemica, 2012, 114, 101-115.	1.8	34
38	Peripheral Chemoreceptors in Air- Versus Water- Breathers. Advances in Experimental Medicine and Biology, 2012, 758, 19-27.	1.6	8
39	Neuroepithelial cells and the hypoxia emersion response in the amphibious fish <i>Kryptolebias marmoratus</i> . Journal of Experimental Biology, 2011, 214, 2560-2568.	1.7	87
40	Ammonia sensing by neuroepithelial cells and ventilatory responses to ammonia in rainbow trout. Journal of Experimental Biology, 2011, 214, 2678-2689.	1.7	46
41	Nervous regulation of internal organs in fishes. Preface. Acta Histochemica, 2009, 111, 173-175.	1.8	1
42	Nervous control of the gills. Acta Histochemica, 2009, 111, 207-216.	1.8	33
43	Oxygen-sensitive Neuroepithelial Cells in the Gills of Aquatic Vertebrates. , 2009, , 1-30.		37
44	New developments on gill innervation: insights from a model vertebrate. Journal of Experimental Biology, 2008, 211, 2371-2378.	1.7	29
45	Proton modulation of ion channels in isolated horizontal cells of the goldfish retina. Journal of Physiology, 2007, 581, 529-541.	2.9	15
46	Ontogenesis of oxygen chemoreception in aquatic vertebrates. Respiratory Physiology and Neurobiology, 2006, 154, 139-152.	1.6	44
47	Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell and Tissue Research, 2006, 323, 1-10.	2.9	89
48	Epithelial mitochondria-rich cells and associated innervation in adult and developing zebrafish. Journal of Comparative Neurology, 2006, 497, 817-832.	1.6	40
49	Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse. Journal of Neuroscience, 2005, 25, 4108-4117.	3.6	118
50	Development of oxygen sensing in the gills of zebrafish. Journal of Experimental Biology, 2005, 208, 1537-1549.	1.7	129
51	Fishing for O2 chemoreceptors in vertebrates. , 2005, , 39-40.		0
52	Neuroepithelial oxygen chemoreceptors of the zebrafish gill. Journal of Physiology, 2004, 560, 737-752.	2.9	169
53	Neuroepithelial cells and associated innervation of the zebrafish gill: A confocal immunofluorescence study. Journal of Comparative Neurology, 2003, 461, 1-17.	1.6	153
54	Potential Oxygen Sensing Pathways in the Zebrafish Gill. Advances in Experimental Medicine and Biology, 2003, 536, 217-223.	1.6	1

MICHAEL G JONZ

#	Article	IF	CITATIONS
55	Effects of 5-HT (serotonin) on reproductive behaviour in <i>Heterodera schachtii </i> (Nematoda). Canadian Journal of Zoology, 2001, 79, 1727-1732.	1.0	7
56	Partial isolation of a water soluble pheromone from the sugar beet cyst nematode, Heterodera schachtii, using a novel bioassay. Nematology, 2001, 3, 55-64.	0.6	5
57	Neurochemical Signalling Associated With Gill Oxygen Sensing and Ventilation: A Receptor Focused Mini-Review. Frontiers in Physiology, 0, 13, .	2.8	7