Michael G Jonz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8191685/publications.pdf

Version: 2024-02-01

57	1,626	19	38
papers	citations	h-index	g-index
60	60	60	928
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neuroepithelial oxygen chemoreceptors of the zebrafish gill. Journal of Physiology, 2004, 560, 737-752.	2.9	169
2	Neuroepithelial cells and associated innervation of the zebrafish gill: A confocal immunofluorescence study. Journal of Comparative Neurology, 2003, 461, 1-17.	1.6	153
3	Development of oxygen sensing in the gills of zebrafish. Journal of Experimental Biology, 2005, 208, 1537-1549.	1.7	129
4	Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse. Journal of Neuroscience, 2005, 25, 4108-4117.	3.6	118
5	Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell and Tissue Research, 2006, 323, 1-10.	2.9	89
6	Neuroepithelial cells and the hypoxia emersion response in the amphibious fish <i>Kryptolebias marmoratus</i> . Journal of Experimental Biology, 2011, 214, 2560-2568.	1.7	87
7	Sensing and surviving hypoxia in vertebrates. Annals of the New York Academy of Sciences, 2016, 1365, 43-58.	3.8	68
8	Neuroepithelial cells of the gill and their role in oxygen sensing. Respiratory Physiology and Neurobiology, 2012, 184, 301-308.	1.6	51
9	Ammonia sensing by neuroepithelial cells and ventilatory responses to ammonia in rainbow trout. Journal of Experimental Biology, 2011, 214, 2678-2689.	1.7	46
10	Ontogenesis of oxygen chemoreception in aquatic vertebrates. Respiratory Physiology and Neurobiology, 2006, 154, 139-152.	1.6	44
11	Serotonergic neuroepithelial cells of the skin in developing zebrafish: morphology, innervation and oxygen-sensitive properties. Journal of Experimental Biology, 2012, 215, 3881-94.	1.7	44
12	Epithelial mitochondria-rich cells and associated innervation in adult and developing zebrafish. Journal of Comparative Neurology, 2006, 497, 817-832.	1.6	40
13	Peripheral chemoreceptors in fish: A brief history and a look ahead. Comparative Biochemistry and Physiology Part A, Molecular & Degrative Physiology, 2015, 186, 27-38.	1.8	37
14	Oxygen-sensitive Neuroepithelial Cells in the Gills of Aquatic Vertebrates. , 2009, , 1-30.		37
15	Confocal imaging of Merkel-like basal cells in the taste buds of zebrafish. Acta Histochemica, 2012, 114, 101-115.	1.8	34
16	Nervous control of the gills. Acta Histochemica, 2009, 111, 207-216.	1.8	33
17	Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish. Journal of Experimental Biology, 2013, 216, 869-80.	1.7	33
18	Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia. Journal of Experimental Biology, 2015, 218, 1777-86.	1.7	32

#	Article	IF	CITATIONS
19	New developments on gill innervation: insights from a model vertebrate. Journal of Experimental Biology, 2008, 211, 2371-2378.	1.7	29
20	Extracellular H+ induces Ca2+ signals in respiratory chemoreceptors of zebrafish. Pflugers Archiv European Journal of Physiology, 2015, 467, 399-413.	2.8	27
21	Single-cell transcriptomic analysis of neuroepithelial cells and other cell types of the gills of zebrafish (Danio rerio) exposed to hypoxia. Scientific Reports, 2022, 12, .	3.3	22
22	Insights into the evolution of polymodal chemoreceptors. Acta Histochemica, 2018, 120, 623-629.	1.8	20
23	Hydrogen sulphide toxicity and the importance of amphibious behaviour in a mangrove fish inhabiting sulphide-rich habitats. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 223-235.	1.5	20
24	Functional prediction and physiological characterization of a novel short trans-membrane protein 1 as a subunit of mitochondrial respiratory complexes. Physiological Genomics, 2012, 44, 1133-1140.	2.3	16
25	Hypercapnia and low pH induce neuroepithelial cell proliferation and emersion behaviour in the amphibious fish Kryptolebias marmoratus. Journal of Experimental Biology, 2015, 218, 2987-90.	1.7	16
26	Characterization of ion channels and O ₂ sensitivity in gill neuroepithelial cells of the anoxia-tolerant goldfish (<i>Carassius auratus</i>). Journal of Neurophysiology, 2017, 118, 3014-3023.	1.8	16
27	Distribution and chronotropic effects of serotonin in the zebrafish heart. Autonomic Neuroscience: Basic and Clinical, 2017, 206, 43-50.	2.8	16
28	Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen. PLoS ONE, 2016, 11, e0154261.	2.5	16
29	Proton modulation of ion channels in isolated horizontal cells of the goldfish retina. Journal of Physiology, 2007, 581, 529-541.	2.9	15
30	Distribution and morphology of cholinergic cells in the branchial epithelium of zebrafish (Danio) Tj ETQq0 0 0 rgB	T <u>lO</u> yerloo	ck 10 Tf 50 30
31	CO2 Signaling in Chemosensory Neuroepithelial Cells of the Zebrafish Gill Filaments: Role of Intracellular Ca2+ and pH. Advances in Experimental Medicine and Biology, 2012, 758, 143-148.	1.6	12
32	Expression of <i>sall4</i> in taste buds of zebrafish. Developmental Neurobiology, 2013, 73, 543-558.	3.0	12
33	Regeneration of the gill filaments and replacement of serotonergic neuroepithelial cells in adult zebrafish (Danio rerio). Respiratory Physiology and Neurobiology, 2020, 274, 103366.	1.6	12
34	A comparative perspective on lung and gill regeneration. Journal of Experimental Biology, 2020, 223, .	1.7	12
35	Identification of oxygen-sensitive neuroepithelial cells through an endogenous reporter gene in larval and adult transgenic zebrafish. Cell and Tissue Research, 2021, 384, 35-47.	2.9	11
36	Purinergic and adenosine receptors contribute to hypoxic hyperventilation in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 214, 50-57.	1.8	10

#	Article	IF	CITATIONS
37	Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. Journal of Neurophysiology, 2017, 117, 523-536.	1.8	9
38	Spontaneous action potentials in retinal horizontal cells of goldfish (<i>Carassius auratus</i>) are dependent upon L-type Ca ²⁺ channels and ryanodine receptors. Journal of Neurophysiology, 2019, 122, 2284-2293.	1.8	9
39	Peripheral Chemoreceptors in Air- Versus Water- Breathers. Advances in Experimental Medicine and Biology, 2012, 758, 19-27.	1.6	8
40	Effects of 5-HT (serotonin) on reproductive behaviour in <i>Heterodera schachtii </i> (Nematoda). Canadian Journal of Zoology, 2001, 79, 1727-1732.	1.0	7
41	Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (<i>Carassius auratus</i>). Journal of Experimental Biology, 2021, 224, .	1.7	7
42	Neurochemical Signalling Associated With Gill Oxygen Sensing and Ventilation: A Receptor Focused Mini-Review. Frontiers in Physiology, 0, 13 , .	2.8	7
43	Oxygen Sensitivity of Gill Neuroepithelial Cells in the Anoxia-Tolerant Goldfish. Advances in Experimental Medicine and Biology, 2012, 758, 167-172.	1.6	6
44	Partial isolation of a water soluble pheromone from the sugar beet cyst nematode, Heterodera schachtii, using a novel bioassay. Nematology, 2001, 3, 55-64.	0.6	5
45	The development of the O2-sensing system in an amphibious fish: consequences of variation in environmental O2 levels. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 681-699.	1.5	5
46	Mitogenic action of hypoxia upon cutaneous neuroepithelial cells in developing zebrafish. Developmental Neurobiology, 2017, 77, 789-801.	3.0	4
47	Replacement of mitochondrion-rich cells during regeneration of the gills and opercular epithelium in zebrafish (Danio rerio). Acta Histochemica, 2021, 123, 151738.	1.8	4
48	Retinal horizontal cells of goldfish (<scp><i>Carassius auratus</i></scp>) display subtypeâ€specific differences in spontaneous action potentials in situ. Journal of Comparative Neurology, 2021, 529, 1756-1767.	1.6	3
49	Goldfish and crucian carp are natural models of anoxia tolerance in the retina. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2022, 270, 111244.	1.8	3
50	Oxygen-sensitive Neuroepithelial Cells in the Gills of Aquatic Vertebrates., 2019,, 1-30.		2
51	Nervous regulation of internal organs in fishes. Preface. Acta Histochemica, 2009, 111, 173-175.	1.8	1
52	Potential Oxygen Sensing Pathways in the Zebrafish Gill. Advances in Experimental Medicine and Biology, 2003, 536, 217-223.	1.6	1
53	Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (<i>Carassius) Tj ETQq1 1</i>	0.784314 1.7	rgBT /Overl
54	Action Potential Activity and Membrane Structure in Neurons of the Goldfish Retina Undergo Seasonal Changes. Biophysical Journal, 2020, 118, 457a.	0.5	0

#	Article	IF	Citations
55	Fishing for O2 chemoreceptors in vertebrates. , 2005, , 39-40.		O
56	Characterization of Ca 2+ â€Based Action Potentials in Horizontal Cells in the Goldfish (Carassius) Tj ETQq0 0 () rgBT_/Ov	erlock 10 Tf 50
57	Unfolding the Mysteries of Oxygen Sensing ―A Comprehensive Analysis of the Hypoxic Response in Zebrafish Gills One Cell at a Time via Single Cell RNA Sequencing. FASEB Journal, 2020, 34, 1-1.	0.5	0