John F Watts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190686/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ε ΜΛΤΤς

#	Article	IF	CITATIONS
1	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442-1446.	6.0	1,221
2	XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Applied Surface Science, 2017, 405, 79-87.	3.1	191
3	The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification. Polymer Reviews, 2012, 52, 321-354.	5.3	164
4	The role of the interphase in the environmental failure of adhesive joints. Acta Materialia, 2000, 48, 4543-4553.	3.8	155
5	Green infrastructure for air quality improvement in street canyons. Environment International, 2021, 146, 106288.	4.8	118
6	Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surface and Interface Analysis, 2006, 38, 198-201.	0.8	97
7	Evidence of specific interaction between ?-glycidoxypropyltrimethoxysilane and oxidized aluminium using high-mass resolution ToF-SIMS. Surface and Interface Analysis, 2000, 29, 115-125.	0.8	90
8	A study of electrochemically treated PAN based carbon fibres by IGC and XPS. Carbon, 2007, 45, 2433-2444.	5.4	82
9	The use of XPS to examine the interaction of poly(acrylic acid) with oxidised metal substrates. Journal of Electron Spectroscopy and Related Phenomena, 1997, 85, 107-121.	0.8	72
10	The characterization of the interfacial interaction between polymeric methylene diphenyl diisocyanate and aluminum: a ToFâ€6IMS and XPS study. Surface and Interface Analysis, 2010, 42, 1432-1444.	0.8	65
11	The surface chemistry and acid–base properties of a PAN-based carbon fibre. Carbon, 2000, 38, 675-689.	5.4	60
12	The adsorption of alkoxysilanes on oxidised aluminium substrates. International Journal of Adhesion and Adhesives, 1998, 18, 179-192.	1.4	55
13	Laser surface modification of poly(etheretherketone) to enhance surface free energy, wettability and adhesion. International Journal of Adhesion and Adhesives, 2015, 62, 69-77.	1.4	54
14	Next Generation Device Grade Silicon-Germanium on Insulator. Scientific Reports, 2015, 5, 8288.	1.6	52
15	The interaction of a commercial dry film adhesive with aluminium and organosilane treated aluminium surfaces: a study by XPS and ToF-SIMS. International Journal of Adhesion and Adhesives, 2002, 22, 205-218.	1.4	50
16	Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	49
17	simsMVA: A tool for multivariate analysis of ToF-SIMS datasets. Chemometrics and Intelligent Laboratory Systems, 2018, 182, 180-187.	1.8	48
18	Migration and segregation phenomena of a silicone additive in a multilayer organic coating. Progress in Organic Coatings, 2005, 54, 104-112.	1.9	46

#	Article	IF	CITATIONS
19	Segregation and crosslinking in urea formaldehyde/epoxy resins: a study by high-resolution XPS. Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 233-247.	0.8	45
20	Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy, 2020, 78, 105249.	8.2	45
21	Surface physico-chemistry of corona-discharge-treated poly(ethylene terephthalate) film. Surface and Interface Analysis, 2002, 33, 617-625.	0.8	44
22	Effect of solvent nature on the interaction of -glycidoxy propyl trimethoxy silane on oxidised aluminium surface: A study by solution chemistry and surface analysis. International Journal of Adhesion and Adhesives, 2006, 26, 16-27.	1.4	41
23	Organization of methoxysilane molecules on iron. International Journal of Adhesion and Adhesives, 1996, 16, 5-15.	1.4	40
24	THE INFLUENCE OF PROCESS PARAMETERS ON THE INTERFACIAL CHEMISTRY OF Î ³ -GPS ON ALUMINIUM: A REVIEW. Journal of Adhesion, 2004, 80, 291-312.	1.8	40
25	Interaction of Epoxy Analogue Molecules with Organosilane-Treated Aluminum:  A Study by XPS and ToFâ^'SIMS. Langmuir, 2000, 16, 6510-6518.	1.6	38
26	Non-negative matrix factorisation of large mass spectrometry datasets. Chemometrics and Intelligent Laboratory Systems, 2017, 163, 76-85.	1.8	38
27	A ToF-SIMS investigation of a buried polymer/polymer interface exposed by ultra-low-angle microtomy. Surface and Interface Analysis, 2004, 36, 1575-1581.	0.8	37
28	Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloys. Progress in Organic Coatings, 2018, 119, 65-75.	1.9	37
29	Angle-resolved XPS characterization of urea formaldehyde-epoxy systems. Surface and Interface Analysis, 2002, 33, 869-878.	0.8	34
30	Approaches to analyzing insulators with Auger electron spectroscopy: Update and overview. Journal of Electron Spectroscopy and Related Phenomena, 2010, 176, 80-94.	0.8	33
31	Surface analysis of 316 stainless steel treated with cold atmospheric plasma. Applied Surface Science, 2017, 403, 240-247.	3.1	33
32	A Time-of-Flight Secondary Ion Mass Spectrometry/Multivariate Analysis (ToF-SIMS/MVA) Approach To Identify Phase Segregation in Blends of Incompatible but Extremely Similar Resins. Analytical Chemistry, 2018, 90, 3936-3941.	3.2	33
33	Flame treatment of polypropylene: A study by electron and ion spectroscopies. International Journal of Adhesion and Adhesives, 2015, 63, 26-33.	1.4	32
34	The interfacial interaction between isocyanate and stainless steel. International Journal of Adhesion and Adhesives, 2019, 88, 1-10.	1.4	32
35	SIMS fingerprint analysis on organic substrates. Surface and Interface Analysis, 2010, 42, 826-829.	0.8	31
36	Interfacial chemistry of adhesive joint failure: an investigation by small area XPS, imaging XPS and TOF-SIMS. Journal of Materials Chemistry, 1996, 6, 479.	6.7	29

#	Article	IF	CITATIONS
37	Interfacial chemistry of adhesives on hydrated aluminium and hydrated aluminium treated with an organosilane. Surface and Interface Analysis, 2004, 36, 1449-1468.	0.8	29
38	An experimental study of charge distribution in crystalline and amorphous Si nanoclusters in thin silica films. Journal of Applied Physics, 2008, 103, .	1.1	29
39	An experimental study of bonding and crystal structure modifications in MoSi2 and MoSi2+xAl (x=10) Tj ETQq1 1 1063-1078.	0.784314 3.8	l rgBT /Ove 28
40	Interface analysis and compositional depth profiling by XPS of polymer coatings prepared using ultra-low-angle microtomy. Surface and Interface Analysis, 2004, 36, 1032-1036.	0.8	28
41	The structure of the interface in carbon fibre composites by scanning Auger microscopy. Journal of Materials Science, 1990, 25, 1902-1908.	1.7	27
42	ToF-SIMS studies of the adsorption of epoxy resin molecules on organosilane-treated aluminium: Adsorption kinetics and adsorption isotherms. International Journal of Adhesion and Adhesives, 2006, 26, 28-39.	1.4	27
43	Surface characterisation of pine wood by XPS. Surface and Interface Analysis, 2016, 48, 589-592.	0.8	27
44	Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques. International Journal of Adhesion and Adhesives, 2019, 91, 142-149.	1.4	27
45	The chemical throwing power of lithium-based inhibitors from organic coatings on AA2024-T3. Corrosion Science, 2019, 150, 194-206.	3.0	27
46	Adsorption isotherms of PMMA on a conducting polymer by ToF-SIMS. Journal of Materials Chemistry, 1995, 5, 845.	6.7	26
47	The determination of adsorption isotherms by XPS and ToF-SIMS: their role in adhesion science. International Journal of Adhesion and Adhesives, 1999, 19, 435-443.	1.4	26
48	Organicâ^'Inorganic Hybrid Nanoparticles:Â Surface Characteristics and Interactions with a Polyester Resin. Langmuir, 2006, 22, 5144-5151.	1.6	26
49	ToF-SIMS depth profiling of a complex polymeric coating employing a C60 sputter source. Surface and Interface Analysis, 2007, 39, 467-475.	0.8	25
50	An XPS study of the steel-aromatic moisture-cured urethane interface. Journal of Adhesion Science and Technology, 1992, 6, 377-393.	1.4	24
51	High-resolution XPS study of crosslinking and segregation phenomena in hexamethoxymethyl melamine-polyester resins. Surface and Interface Analysis, 2002, 34, 570-574.	0.8	24
52	Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	24
53	Examination of the interface of a model adhesive joint by surface analysis: a study by XPS and ToF IMS. Surface and Interface Analysis, 2009, 41, 508-516.	0.8	23
54	Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells. Solar Rrl, 2020, 4, 2000060.	3.1	23

#	Article	IF	CITATIONS
55	Surface characterisation of components used in coil coating primers. International Journal of Adhesion and Adhesives, 2000, 20, 1-10.	1.4	22
56	Surface chemical and thermodynamic properties of γâ€glycidoxy-propyltrimethoxysilane-treated alumina: an XPS and IGC study. Journal of Materials Chemistry, 2001, 11, 533-543.	6.7	21
57	Intercoat adhesion failure in a multilayer organic coating system: An X-ray photoelectron spectroscopy study. Progress in Organic Coatings, 2005, 54, 20-27.	1.9	21
58	Characterisation of cellulose and hardwood organosolv lignin reference materials by XPS. Surface Science Spectra, 2016, 23, 1-8.	0.3	21
59	Solvent Treatment of Wet-Spun PEDOT: PSS Fibers for Fiber-Based Wearable pH Sensing. Sensors, 2019, 19, 4213.	2.1	21
60	The potential for the application of Xâ€ray photoelectron spectroscopy in forensic science. Surface and Interface Analysis, 2010, 42, 358-362.	0.8	20
61	Electron spectroscopy with Cr Kl 2 photons: high energy XPS and X-AES. Journal of Electron Spectroscopy and Related Phenomena, 2001, 113, 153-166.	0.8	19
62	Performance and application of a high energy monochromated Cu Kα1 X-ray source for the electron spectroscopy of materials. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142, 151-162.	0.8	19
63	The characterisation of the interfacial chemistry of adhesion of rigid polyurethane foam to aluminium. Journal of Materials Science, 2012, 47, 902-918.	1.7	19
64	The Interaction of Î ³ -Glycidoxypropyltrimethoxysilane with Oxidised Aluminium Substrates: The Effect of Drying Temperature. Journal of Adhesion, 2000, 73, 313-340.	1.8	18
65	Analysis of the Li KLL Auger Transition on Freshly Exposed Lithium and Lithium Surface Oxide by AES. Surface Science Spectra, 2013, 20, 113-127.	0.3	18
66	XPS Study of non-rinse chromate treatments. Surface and Interface Analysis, 1993, 20, 379-384.	0.8	17
67	The effect of silane incorporation on a metal adhesive interface: A study by electron energy loss spectroscopy. Micron, 2010, 41, 130-134.	1.1	17
68	The Role of the Surface Pretreatment in the Durability of Aluminium-Alloy Structural Adhesive Joints: Mechanisms of Failure. Journal of Adhesion, 2013, 89, 369-397.	1.8	17
69	The electron spectra of beryllium and beryllium oxide: an XPS, Xâ€AES and AES study. Surface and Interface Analysis, 2014, 46, 989-992.	0.8	17
70	Auger parameter studies of aluminium-transition metal alloys. Surface and Interface Analysis, 2002, 34, 360-364.	0.8	16
71	Surface characterization of photocured aromatic methacrylate resins by inverse gas chromatography. International Journal of Adhesion and Adhesives, 1995, 15, 3-8.	1.4	15
72	Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media. Journal of Materials Chemistry, 2001, 11, 2437-2444.	6.7	15

#	Article	IF	CITATIONS
73	Characterisation of the curing temperature effects on polyester systems by angle-resolved XPS (ARXPS). International Journal of Adhesion and Adhesives, 2003, 23, 101-113.	1.4	15
74	Enhancement of the durability of a polyamide coating: incorporation of an aminosilane into the powder formulation. Surface and Interface Analysis, 2004, 36, 685-688.	0.8	15
75	Evaluation of the Interaction and Adsorption of \hat{I}^3 -Glycidoxy propyl trimethoxy silane with Grit-Blasted Aluminium: A ToF-SIMS and XPS Study. Journal of Adhesion, 2008, 84, 725-741.	1.8	15
76	Role of Corrosion in the Failure of Adhesive Joints. , 2010, , 2463-2481.		15
77	The interaction of organic molecules with carbon fibre surfaces: a ToF-SIMS study. Composites Part A: Applied Science and Manufacturing, 1998, 29, 1291-1304.	3.8	14
78	Wear performance and characterisation of coatings for nuclear applications: WC-(W,Cr)2C-Ni and hard chromium plate. Wear, 2019, 430-431, 169-182.	1.5	14
79	X-ray Photoelectron Spectroscopy Investigations of Acid-Base Interactions in Adhesion. Journal of Adhesion, 1993, 41, 81-91.	1.8	13
80	Exploring Different Binders for a LiFePO4 Battery, Battery Testing, Modeling and Simulations. Energies, 2022, 15, 2332.	1.6	13
81	Al Kα and Cu Kα1 excited XPS of vanadium oxide and VF3 powders: Measurement of the V 1s – KLL Auger parameters. Journal of Electron Spectroscopy and Related Phenomena, 2008, 162, 19-24.	0.8	12
82	Polystyreneâ€ s ilicon bonding through Ï€ electrons: a combined XPS and DFT study. Surface and Interface Analysis, 2016, 48, 556-560.	0.8	12
83	A study of the interfacial chemistry between polymeric methylene diphenyl diâ€isocyanate and a Fe–Cr alloy. Surface and Interface Analysis, 2021, 53, 340-349.	0.8	12
84	Quantification routines for adsorption studies in static secondary ion mass spectrometry and the effect of ionisation probability. Applied Surface Science, 1999, 150, 244-254.	3.1	11
85	Introduction to a series of dicarboxylic acids analyzed by x-ray photoelectron spectroscopy. Surface Science Spectra, 2017, 24, .	0.3	11
86	Composition and structure of semi-insulating polycrystalline silicon thin films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 361-376.	0.6	10
87	The use of XPS and ToF-SIMS to investigate adhesion failure of a cationic radiation cured coating on galvanized steel. International Journal of Adhesion and Adhesives, 1998, 18, 193-198.	1.4	10
88	Free-electron metal alloys: a study by high-energy XPS. Surface and Interface Analysis, 2002, 33, 775-780.	0.8	10
89	Degradation of Interfacial Chemistry of Epoxy/Silane/Aluminium Interfaces as a Result of Aqueous Attack. Journal of Adhesion, 2005, 81, 963-988.	1.8	10
90	Surface and interface analysis of complex polymeric paint formulations. Surface and Interface Analysis, 2006, 38, 557-560.	0.8	10

#	Article	IF	CITATIONS
91	The effect of ormosil nano-particles on the toughness of a polyester resin. Journal of Materials Science, 2007, 42, 3230-3237.	1.7	10
92	Processability studies of silicaâ€ŧhermoset polymer matrix nanocomposites. Polymer Engineering and Science, 2008, 48, 216-222.	1.5	10
93	Enhancing brush tyre model accuracy through friction measurements. Vehicle System Dynamics, 0, , 1-23.	2.2	10
94	The effect of siloxane-type molecules on the interlaminar toughness of CFRP. Composites Part A: Applied Science and Manufacturing, 2000, 31, 559-569.	3.8	9
95	Interfacial studies of Al ₂ O ₃ deposited on 4Hâ€&iC(0001). Surface and Interface Analysis, 2008, 40, 822-825.	0.8	9
96	Effect of flame treatment on formulated polyvinylchloride surface: A study using ARXPS. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 409-414.	0.8	9
97	Characterisation of wood growth regions by multivariate analysis of ToFâ€SIMS data. Surface and Interface Analysis, 2016, 48, 584-588.	0.8	9
98	Degradation Diagnostics from the Subsurface of Lithiumâ€lon Battery Electrodes. Energy and Environmental Materials, 2022, 5, 662-669.	7.3	9
99	Analysis of atmospheric plasmaâ€ŧreated polypropylene by large area <scp>ToF IMS</scp> imaging and <scp>NMF</scp> . Surface and Interface Analysis, 2018, 50, 1180-1186.	0.8	8
100	Mechanism of delamination of a polyamide coating modified with an aminosilane. Surface and Interface Analysis, 2006, 38, 168-171.	0.8	7
101	Development of an automated in situ fracture stage for a ToF-SIMS system. Surface and Interface Analysis, 2008, 40, 1409-1414.	0.8	7
102	Chemical Characterisation of the Fracture Surfaces of Polyester Resin and a Polyester-Based Nanocomposite. Journal of Adhesion Science and Technology, 2009, 23, 689-708.	1.4	7
103	The Definition of the Locus of Failure on Ceramic Substrates: The Benefit of Monochromated XPS. Journal of Adhesion, 1994, 46, 161-164.	1.8	6
104	Interaction of diethanolamine with non-rinse chromate treated steel surfaces. Journal of Materials Chemistry, 1999, 9, 1211-1216.	6.7	6
105	An investigation of the distribution of minor components in complex polymeric paint formulations using ToF-SIMS depth profiling. Surface and Interface Analysis, 2008, 40, 436-440.	0.8	6
106	Failure of a Waterborne Primer Applied to Zinc Coated Steel. Surface and Interface Analysis, 2012, 44, 1054-1058.	0.8	6
107	A ToF-SIMS investigation of the thermodynamics and bonding of polymeric methylene diphenyl diisocyanate on oxidised aluminium and iron surfaces. RSC Advances, 2013, 3, 10754.	1.7	6
108	Analysis of the Be KLL Auger Transition on Beryllium and Beryllium Oxide by AES. Surface Science Spectra, 2013, 20, 97-112.	0.3	6

#	Article	IF	CITATIONS
109	XPS Examination of the Oxide Layer Formed on Kovar Following Pre-Oxidation. Surface Science Spectra, 2015, 22, 58-70.	0.3	6
110	Oxidation of a depleted uraniumâ€5 wt% molybdenum (Uâ€5Mo) alloy in UHV by AES and XPS. Surface and Interface Analysis, 2019, 51, 849-856.	0.8	6
111	A comparative study of the wear performance of hard coatings for nuclear applications. Wear, 2022, 488-489, 204124.	1.5	6
112	Failure mechanisms in adhesively bonded aluminium: an XPS and PEELS study. Surface and Interface Analysis, 2008, 40, 128-131.	0.8	5
113	Microbeam analysis applied to adhesion, surfaces and interfaces. Mikrochimica Acta, 2009, 164, 379-385.	2.5	5
114	The adsorption of an epoxy acrylate resin on aluminium alloy conversion coatings. International Journal of Adhesion and Adhesives, 2011, 31, 687-694.	1.4	5
115	A surface investigation of parchments using ToF IMS and PCA. Surface and Interface Analysis, 2016, 48, 393-397.	0.8	5
116	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part II - butanedioic acid anhydrous. Surface Science Spectra, 2017, 24, .	0.3	5
117	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part V - heptanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011105.	0.3	5
118	A guide for the meaningful surface analysis of wood by XPS and ToF IMS. Surface and Interface Analysis, 2022, 54, 389-404.	0.8	5
119	Sulfur infiltration and allotrope formation in porous cathode hosts for lithiumâ€sulfur batteries. AICHE Journal, 2022, 68, .	1.8	5
120	Investigating the adsorption of components of an epoxy primer on to galvanised steel using ToF-SIMS. Surface Coatings International Part B: Coatings Transactions, 2003, 86, 291-300.	0.3	4
121	Monitoring atomic level electronic changes in the alloying of stainless steels with Auger and photoelectron spectroscopy. Surface Science, 2008, 602, 216-225.	0.8	4
122	Analysis of the Be KLL Auger Transition of Beryllium Nitride and Beryllium Carbide by AES. Surface Science Spectra, 2015, 22, 71-80.	0.3	4
123	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part IV - hexanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011104.	0.3	4
124	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part VI - octanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011106.	0.3	4
125	Investigation of Chemical and Physical Surface Changes of Thermally Conditioned Glass Fibres. Fibers, 2019, 7, 7.	1.8	4
126	An interfacial chemistry study of methylene diphenyl diisocyanate and tantalum for heat exchanger applications. Surface and Interface Analysis, 2020, 52, 685-693.	0.8	4

#	Article	IF	CITATIONS
127	The adhesion of aluminium inserts in epoxy composites: The role of surface pre-treatment. International Journal of Adhesion and Adhesives, 2022, 118, 103196.	1.4	4
128	Adsorption of polysulphide sealants onto organosilane-coated aluminium and aluminium substrates. Surface and Interface Analysis, 2002, 34, 30-34.	0.8	3
129	The forensic study of single fibre pull-out specimens using ToF-SIMS. Composite Interfaces, 2007, 14, 387-402.	1.3	3
130	The transfer of organics onto glass studied by ToF-SIMS. Surface and Interface Analysis, 2011, 43, 423-426.	0.8	3
131	An investigation of the effect of chlorinated solvents on surface characteristics of Sâ€65 beryllium. Surface and Interface Analysis, 2016, 48, 689-693.	0.8	3
132	Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments. Review of Scientific Instruments, 2016, 87, 086102.	0.6	3
133	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part I - propanedioic acid anhydrous. Surface Science Spectra, 2017, 24, .	0.3	3
134	Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part III - pentanedioic acid anhydrous. Surface Science Spectra, 2017, 24, 011103.	0.3	3
135	Identification of uranium hexavalent compounds using X-ray photoelectron spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 79-88.	0.7	3
136	Quantitative atomic force microscopy: A statistical treatment of high-speed AFM data for quality control applications. Ultramicroscopy, 2022, 239, 113546.	0.8	3
137	Early stages of degradation of polysulphide sealants in an aqueous environment. Surface and Interface Analysis, 2002, 34, 19-24.	0.8	2
138	Surface characterization of polyester resins formulated with different cross-linking agents. Surface and Interface Analysis, 2008, 40, 137-141.	0.8	2
139	Failure characteristics of adhesively bonded aluminium for spacecraft applications. Surface and Interface Analysis, 2008, 40, 132-136.	0.8	2
140	Influence of Temperature on Aminosilane Thin Films Deposited on Aluminium Substrates: A Study by Surface Analysis. Journal of Adhesion, 2008, 84, 847-871.	1.8	2
141	XPS examination of the native oxide layer on Kovar using aluminium, magnesium and silver x-ray sources. Surface Science Spectra, 2016, 23, 40-50.	0.3	2
142	Interfacial Chemistry Investigation of Initial Fouling Conditions in Isocyanate Production: The Antifouling Performance of AISI 316L Stainless Steel. ACS Omega, 2021, 6, 25950-25963.	1.6	2
143	Direct observation and characterisation of the oxide nanostructured interface resulting from organosilane pre-treatment of aluminium. Materials Research Society Symposia Proceedings, 2002, 734, 181.	0.1	1
144	A handbook that justifies its title. Nano Today, 2006, 1, 51.	6.2	1

#	Article	IF	CITATIONS
145	The chemical state plot for beryllium compounds. Surface and Interface Analysis, 2015, 47, 994-995.	0.8	1
146	Surface mass spectrometry as a new approach for the characterisation of coffee. Surface and Interface Analysis, 2018, 50, 1051-1057.	0.8	1
147	A growth mechanism for carbon nanotubes using metal oxides as catalysts. Surface and Interface Analysis, 2018, 50, 734-743.	0.8	1
148	Use of Surface Analysis Methods to Probe the Interfacial Chemistry of Adhesion. , 2018, , 227-255.		1
149	Polymer coatings on conductive polypyrroles surface characterization by XPS, ToFSIMS, inverse gas chromatography and AFM. AIP Conference Proceedings, 1996, , .	0.3	0
150	Surfaces: how to assess. , 2005, , 52-74.		0
151	Electrofunctional polymer nanocomposites. , 2008, , .		Ο
152	The 15th European Conference on Applications of Surface and Interface Analysis. Surface and Interface Analysis, 2014, 46, 653-653.	0.8	0
153	Analysis of Silicon Germanium Standards for the Quantification of SiGe Microelectronic Devices Using AES. Surface Science Spectra, 2015, 22, 32-46.	0.3	0
154	Use of Surface Analysis Methods to Probe the Interfacial Chemistry of Adhesion. , 2017, , 1-29.		0
155	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part II: Butanedioic acid. Surface Science Spectra, 2017, 24, 021403.	0.3	0
156	Dicarboxylic acids analyzed by time-of-flight secondary ion mass spectrometry (Introduction to parts) Tj ETQq0 () 0 rgBT /C	Overlock 10 Tf
157	Dicarboxylic acids analyzed by time-of-flight secondary ion mass spectrometry. Part 0: Ethanedioic acid. Surface Science Spectra, 2017, 24, 021401.	0.3	0
158	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part I: Propanedioic acid. Surface Science Spectra, 2017, 24, 021402.	0.3	0
159	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part III: Pentanedioic acid. Surface Science Spectra, 2017, 24, 021404.	0.3	0
160	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part IV: Hexanedioic acid. Surface Science Spectra, 2017, 24, 021405.	0.3	0
161	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part V: Heptanedioic acid. Surface Science Spectra, 2017, 24, 021406.	0.3	0
162	Dicarboxylic acids analyzed by time-of-flight secondary ions mass spectrometry. Part VI: Oxanedioic acid. Surface Science Spectra, 2017, 24, 021407.	0.3	0

#	Article	IF	CITATIONS
163	Surfaces: How to assess. , 2021, , 79-107.		0
164	Use of Surface Analysis Methods to Probe the Interfacial Chemistry of Adhesion. , 2011, , 209-235.		0
165	Special Issue of Surface and Interface Analysis Martin P. Seah MBE: Shining a light on surface chemical analysis. Surface and Interface Analysis, 2022, 54, 281-281.	0.8	0