## **Christian Cipriani**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190223/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Parallel Actuated Haptic Device for De-localized Tactile Feedback in Prosthetics. Biosystems and Biorobotics, 2022, , 623-627.                                                                                                      | 0.2  | 0         |
| 2  | Effects of Non-in Situ Vibrations on Hand Sensations: A Pilot Study. Biosystems and Biorobotics, 2022, , 611-615.                                                                                                                     | 0.2  | 0         |
| 3  | Highâ€Entropy Sulfides as Electrode Materials for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, .                                                                                                                           | 10.2 | 57        |
| 4  | The myokinetic stimulation interface: activation of proprioceptive neural responses with remotely actuated magnets implanted in rodent forelimb muscle. Journal of Neural Engineering, 2022, 19, 026048.                              | 1.8  | 3         |
| 5  | Feasibility Study on Disentangling Muscle Movements in TMR Patients Through a Myokinetic Control<br>Interface for the Control of Artificial Hands. IEEE Robotics and Automation Letters, 2022, 7, 7240-7246.                          | 3.3  | 1         |
| 6  | Evaluation of Simple Algorithms for Proportional Control of Prosthetic Hands Using Intramuscular<br>Electromyography. Sensors, 2022, 22, 5054.                                                                                        | 2.1  | 2         |
| 7  | Stability and <i>in vivo</i> safety of gold, titanium nitride and parylene C coatings on NdFeB magnets<br>implanted in muscles towards a new generation of myokinetic prosthetic limbs. RSC Advances, 2021, 11,<br>6766-6775.         | 1.7  | 13        |
| 8  | A database of high-density surface electromyogram signals comprising 65 isometric hand gestures.<br>Scientific Data, 2021, 8, 63.                                                                                                     | 2.4  | 14        |
| 9  | Proprioceptive Augmentation With Illusory Kinaesthetic Sensation in Stroke Patients Improves<br>Movement Quality in an Active Upper Limb Reach-and-Point Task. Frontiers in Neurorobotics, 2021, 15,<br>610673.                       | 1.6  | 7         |
| 10 | Localization accuracy of multiple magnets in a myokinetic control interface. Scientific Reports, 2021, 11, 4850.                                                                                                                      | 1.6  | 11        |
| 11 | Feasibility of generating 90ÂHz vibrations in remote implanted magnets. Scientific Reports, 2021, 11,<br>15456.                                                                                                                       | 1.6  | 5         |
| 12 | Neurophysiology of slip sensation and grip reaction: insights for hand prosthesis control of slippage.<br>Journal of Neurophysiology, 2021, 126, 477-492.                                                                             | 0.9  | 5         |
| 13 | Testing silicone digit extensions as a way to suppress natural sensation to evaluate supplementary tactile feedback. PLoS ONE, 2021, 16, e0256753.                                                                                    | 1.1  | 1         |
| 14 | Optimal Spatial Sensor Design for Magnetic Tracking in a Myokinetic Control Interface. Computer<br>Methods and Programs in Biomedicine, 2021, 211, 106407.                                                                            | 2.6  | 8         |
| 15 | Noninvasive augmented sensory feedback in poststroke hand rehabilitation approaches. , 2021, , 207-244.                                                                                                                               |      | 2         |
| 16 | Feasibility of Tracking Multiple Implanted Magnets With a Myokinetic Control Interface: Simulation<br>and Experimental Evidence Based on the Point Dipole Model. IEEE Transactions on Biomedical<br>Engineering, 2020, 67, 1282-1292. | 2.5  | 20        |
| 17 | A database of multi-channel intramuscular electromyogram signals during isometric hand muscles contractions. Scientific Data, 2020, 7, 10.                                                                                            | 2.4  | 16        |
| 18 | The Myokinetic Control Interface: How Many Magnets Can be Implanted in an Amputated Forearm?<br>Evidence From a Simulated Environment. IEEE Transactions on Neural Systems and Rehabilitation<br>Engineering, 2020, 28, 2451-2458.    | 2.7  | 10        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses.<br>Scientific Reports, 2020, 10, 11793.                                                                         | 1.6 | 49        |
| 20 | â€~Doublecheck: a sensory confirmation is required to own a robotic hand, sending a command to feel<br>in charge of it'. Cognitive Neuroscience, 2020, 11, 216-228.                                             | 0.6 | 16        |
| 21 | Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 120.                                   | 2.4 | 10        |
| 22 | Online Grasp Force Estimation From the Transient EMG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2333-2341.                                                                  | 2.7 | 21        |
| 23 | Grasp force estimation from the transient EMG using high-density surface recordings. Journal of Neural Engineering, 2020, 17, 016052.                                                                           | 1.8 | 32        |
| 24 | Instrumented platform for assessment of isometric hand muscles contractions. Measurement Science and Technology, 2019, 30, 065701.                                                                              | 1.4 | 8         |
| 25 | Development of an Embedded Myokinetic Prosthetic Hand Controller. Sensors, 2019, 19, 3137.                                                                                                                      | 2.1 | 13        |
| 26 | SEEDS, simultaneous recordings of high-density EMG and finger joint angles during multiple hand movements. Scientific Data, 2019, 6, 186.                                                                       | 2.4 | 19        |
| 27 | When Less Is More – Discrete Tactile Feedback Dominates Continuous Audio Biofeedback in the<br>Integrated Percept While Controlling a Myoelectric Prosthetic Hand. Frontiers in Neuroscience, 2019,<br>13, 578. | 1.4 | 27        |
| 28 | Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 49.                 | 2.4 | 44        |
| 29 | Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand. Journal of Neural Engineering, 2019, 16, 026034.                                                 | 1.8 | 66        |
| 30 | A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Science<br>Robotics, 2019, 4, .                                                                                      | 9.9 | 198       |
| 31 | Sixâ€Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Annals of Neurology,<br>2019, 85, 137-154.                                                                                        | 2.8 | 140       |
| 32 | The preload force affects the perception threshold of muscle vibration-induced movement illusions.<br>Experimental Brain Research, 2019, 237, 111-120.                                                          | 0.7 | 12        |
| 33 | Improvements on the Design of the S-Finger Prosthetic Digit. Biosystems and Biorobotics, 2019, ,<br>122-126.                                                                                                    | 0.2 | 0         |
| 34 | Method for Optimal Digit Alignment for the Fitting of Partial Hand Powered Prostheses: A Preliminary<br>Study. Biosystems and Biorobotics, 2019, , 132-136.                                                     | 0.2 | 0         |
| 35 | Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 2018, 5, 1700771.                                                                                                         | 5.6 | 136       |
| 36 | The <i>S-Finger</i> : A Synergetic Externally Powered Digit With Tactile Sensing and Feedback. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1264-1271.                      | 2.7 | 19        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Online Prediction of Robot to Human Handover Events Using Vibrations. , 2018, , .                                                                                                                                            |     | 2         |
| 38 | Digital Extensions with Bi-axial Fingertip Sensors for Supplementary Tactile Feedback Studies. , 2018, , .                                                                                                                   |     | 3         |
| 39 | Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Scientific Reports, 2018, 8, 16666.                                                               | 1.6 | 85        |
| 40 | Humans adjust their grip force when passing an object according to the observed speed of the<br>partner's reaching out movement. Experimental Brain Research, 2018, 236, 3363-3377.                                          | 0.7 | 23        |
| 41 | Grasp Force Estimation from HD-EMG Recordings with Channel Selection Using Elastic Nets:<br>Preliminary Study. , 2018, , .                                                                                                   |     | 3         |
| 42 | Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and<br>Manual Dexterity in a Bidirectional Prosthesis. Neuron, 2018, 100, 37-45.e7.                                             | 3.8 | 265       |
| 43 | Improving internal model strength and performance of prosthetic hands using augmented feedback.<br>Journal of NeuroEngineering and Rehabilitation, 2018, 15, 70.                                                             | 2.4 | 34        |
| 44 | Vector Autoregressive Hierarchical Hidden Markov Models for Extracting Finger Movements Using<br>Multichannel Surface EMG Signals. Complexity, 2018, 2018, 1-12.                                                             | 0.9 | 19        |
| 45 | Discrete Vibro-Tactile Feedback Prevents Object Slippage in Hand Prostheses More Intuitively Than<br>Other Modalities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26,<br>1577-1584.           | 2.7 | 36        |
| 46 | Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1756-1764.                                  | 2.7 | 44        |
| 47 | Compliant Prosthetic Wrists Entail More Natural Use Than Stiff Wrists During Reaching, Not<br>(Necessarily) During Manipulation. IEEE Transactions on Neural Systems and Rehabilitation<br>Engineering, 2018, 26, 1407-1413. | 2.7 | 15        |
| 48 | Electro-cutaneous stimulation on the palm elicits referred sensations on intact but not on amputated digits. Journal of Neural Engineering, 2018, 15, 016003.                                                                | 1.8 | 13        |
| 49 | The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 459-468.                                                                 | 2.7 | 94        |
| 50 | Online Bimanual Manipulation Using Surface Electromyography and Incremental Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 227-234.                                                 | 2.7 | 37        |
| 51 | Touch and Hearing Mediate Osseoperception. Scientific Reports, 2017, 7, 45363.                                                                                                                                               | 1.6 | 22        |
| 52 | A cosmetic prosthetic digit with bioinspired embedded touch feedback. , 2017, 2017, 1136-1141.                                                                                                                               |     | 8         |
| 53 | Decoding of individual finger movements from surface EMG signals using vector autoregressive hierarchical hidden Markov models (VARHHMM). , 2017, 2017, 1518-1523.                                                           |     | 7         |
| 54 | The myokinetic control interface: tracking implanted magnets as a means for prosthetic control.<br>Scientific Reports, 2017, 7, 17149.                                                                                       | 1.6 | 42        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Evoking Referred Sensations of Missing Digits by Electro-Tactile Stimulation: Preliminary Tests.<br>Biosystems and Biorobotics, 2017, , 607-611.                                                                                                  | 0.2  | 0         |
| 56 | Humans Can Integrate Augmented Reality Feedback in Their Sensorimotor Control of a Robotic Hand.<br>IEEE Transactions on Human-Machine Systems, 2017, 47, 583-589.                                                                                | 2.5  | 42        |
| 57 | Independent Long Fingers are not Essential for a Grasping Hand. Scientific Reports, 2016, 6, 35545.                                                                                                                                               | 1.6  | 26        |
| 58 | Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of<br>Closed-Loop Myoelectric Transradial Prostheses. IEEE Transactions on Neural Systems and<br>Rehabilitation Engineering, 2016, 24, 1314-1322. | 2.7  | 170       |
| 59 | Treatment of the Partial Hand Amputation: An Engineering Perspective. IEEE Reviews in Biomedical Engineering, 2016, 9, 32-48.                                                                                                                     | 13.1 | 43        |
| 60 | Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements. Biomedical Signal Processing and Control, 2016, 27, 24-31.                                                             | 3.5  | 71        |
| 61 | Control of a Robotic Hand Using a Tongue Control System—A Prosthesis Application. IEEE<br>Transactions on Biomedical Engineering, 2016, 63, 1368-1376.                                                                                            | 2.5  | 51        |
| 62 | PARLOMA – A Novel Human-Robot Interaction System for Deaf-Blind Remote Communication.<br>International Journal of Advanced Robotic Systems, 2015, 12, 57.                                                                                         | 1.3  | 20        |
| 63 | The rubber foot illusion. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 77.                                                                                                                                                           | 2.4  | 41        |
| 64 | ls it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?. IEEE Transactions on<br>Neural Systems and Rehabilitation Engineering, 2015, 23, 600-609.                                                                            | 2.7  | 152       |
| 65 | Tattoo Conductive Polymer Nanosheets for Skin ontact Applications. Advanced Healthcare Materials, 2015, 4, 983-990.                                                                                                                               | 3.9  | 79        |
| 66 | Ultrasound imaging for hand prosthesis control: a comparative study of features and classification methods. , 2015, , .                                                                                                                           |      | 16        |
| 67 | Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study. , 2015, 2015, 2462-5.                                                                                 |      | 22        |
| 68 | Non-back-drivable rotary mechanism with intrinsic compliance for robotic thumb abduction/adduction. Advanced Robotics, 2015, 29, 561-571.                                                                                                         | 1.1  | 8         |
| 69 | Vibrotactile Stimulation Promotes Embodiment of an Alien Hand in Amputees With Phantom<br>Sensations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 450-457.                                                      | 2.7  | 94        |
| 70 | Providing Time-Discrete Gait Information by Wearable Feedback Apparatus for Lower-Limb Amputees:<br>Usability and Functional Validation. IEEE Transactions on Neural Systems and Rehabilitation<br>Engineering, 2015, 23, 250-257.                | 2.7  | 74        |
| 71 | Toward the Development of a Neuro-Controlled Bidirectional Hand Prosthesis. Lecture Notes in Computer Science, 2015, , 105-110.                                                                                                                   | 1.0  | 0         |
| 72 | Bioinspired Fingertip for Anthropomorphic Robotic Hands. Applied Bionics and Biomechanics, 2014, 11, 25-38.                                                                                                                                       | 0.5  | 19        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Real-Time Single Camera Hand Gesture Recognition System for Remote Deaf-Blind Communication.<br>Lecture Notes in Computer Science, 2014, , 35-52.                                                                                                              | 1.0 | 8         |
| 74 | Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex. Journal of<br>Neural Engineering, 2014, 11, 066011.                                                                                                                     | 1.8 | 16        |
| 75 | Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.<br>Experimental Brain Research, 2014, 232, 3421-3429.                                                                                                        | 0.7 | 70        |
| 76 | Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.<br>Journal of Rehabilitation Research and Development, 2014, 51, 1439-1454.                                                                                     | 1.6 | 28        |
| 77 | Guest Editorial. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 711-715.                                                                                                                                                        | 2.7 | 15        |
| 78 | HyVE—Hybrid Vibro-Electrotactile Stimulation—Is an Efficient Approach to Multi-Channel Sensory<br>Feedback. IEEE Transactions on Haptics, 2014, 7, 181-190.                                                                                                    | 1.8 | 34        |
| 79 | Dexterous Control of a Prosthetic Hand Using Fine-Wire Intramuscular Electrodes in Targeted<br>Extrinsic Muscles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22,<br>828-836.                                                    | 2.7 | 79        |
| 80 | Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. Journal of Neural Engineering, 2014, 11, 046001.                                                                                                                    | 1.8 | 95        |
| 81 | Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Science Translational<br>Medicine, 2014, 6, 222ra19.                                                                                                                            | 5.8 | 805       |
| 82 | HyVE: Hybrid Vibro-Electrotactile Stimulation for Sensory Feedback and Substitution in Rehabilitation.<br>IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 290-301.                                                               | 2.7 | 60        |
| 83 | A novel device for multi-modal sensory feedback in hand prosthetics: Design and preliminary prototype. , 2014, , .                                                                                                                                             |     | 7         |
| 84 | Design of Artificial Hands: A Review. Springer Tracts in Advanced Robotics, 2014, , 219-246.                                                                                                                                                                   | 0.3 | 86        |
| 85 | Abstract and Proportional Myoelectric Control for Multi-Fingered Hand Prostheses. Annals of<br>Biomedical Engineering, 2013, 41, 2687-2698.                                                                                                                    | 1.3 | 85        |
| 86 | Controlling hand-assistive devices: utilizing electrooculography as a substitute for vision. IEEE<br>Robotics and Automation Magazine, 2013, 20, 40-52.                                                                                                        | 2.2 | 20        |
| 87 | Artificial Redirection of Sensation From Prosthetic Fingers to the Phantom Hand Map on Transradial<br>Amputees: Vibrotactile Versus Mechanotactile Sensory Feedback. IEEE Transactions on Neural Systems<br>and Rehabilitation Engineering, 2013, 21, 112-120. | 2.7 | 177       |
| 88 | Preliminary design and development of a two degrees of freedom passive compliant prosthetic wrist with switchable stiffness. , 2013, , .                                                                                                                       |     | 18        |
| 89 | Sensory feedback in upper limb prosthetics. Expert Review of Medical Devices, 2013, 10, 45-54.                                                                                                                                                                 | 1.4 | 389       |
| 90 | Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers. Disability and Rehabilitation: Assistive Technology, 2013, 8, 249-254.                                                                   | 1.3 | 39        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Adapting proportional myoelectric-controlled interfaces for prosthetic hands. , 2013, 2013, 6195-8.                                                                                    |     | 4         |
| 92  | Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals. Advances in Human-Computer Interaction, 2013, 2013, 1-9.                                           | 1.8 | 17        |
| 93  | The Effects of Weight and Inertia of the Prosthesis on the Sensitivity of Electromyographic Pattern Recognition in Relax State. Journal of Prosthetics and Orthotics, 2012, 24, 86-92. | 0.2 | 14        |
| 94  | Learning tactile skills through curious exploration. Frontiers in Neurorobotics, 2012, 6, 6.                                                                                           | 1.6 | 41        |
| 95  | Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 40.                    | 2.4 | 88        |
| 96  | Vibrotactile Sensory Substitution Elicits Feeling of Ownership of an Alien Hand. PLoS ONE, 2012, 7, e50756.                                                                            | 1.1 | 53        |
| 97  | A Miniature Vibrotactile Sensory Substitution Device for Multifingered Hand Prosthetics. IEEE<br>Transactions on Biomedical Engineering, 2012, 59, 400-408.                            | 2.5 | 127       |
| 98  | Roughness Encoding for Discrimination of Surfaces in Artificial Active-Touch. IEEE Transactions on Robotics, 2011, 27, 522-533.                                                        | 7.3 | 125       |
| 99  | A Novel Method for Assessing Sense of Body Ownership Using Electroencephalography. IEEE<br>Transactions on Biomedical Engineering, 2011, 58, 12-15.                                    | 2.5 | 6         |
| 100 | Online Myoelectric Control of a Dexterous Hand Prosthesis by Transradial Amputees. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 260-270.           | 2.7 | 201       |
| 101 | The SmartHand transradial prosthesis. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 29.                                                                                     | 2.4 | 209       |
| 102 | Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 53.                | 2.4 | 89        |
| 103 | Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm. , 2011, 2011, 1608-11.                                                |     | 14        |
| 104 | Vibrotactile sensory substitution in multi-fingered hand prostheses: Evaluation studies. , 2011, 2011, 5975477.                                                                        |     | 19        |
| 105 | Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: Preliminary study. , 2011, 2011, 1620-3.                   |     | 20        |
| 106 | Miniaturized non-back-drivable mechanism for robotic applications. Mechanism and Machine Theory, 2010, 45, 1395-1406.                                                                  | 2.7 | 74        |
| 107 | Principal components analysis based control of a multi-dof underactuated prosthetic hand. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 16.                                 | 2.4 | 105       |
| 108 | Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 42.                               | 2.4 | 96        |

| #   | ARTICLE                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica, 2010, 28, 919-927.                                                     | 1.3 | 119       |
| 110 | Double nerve intraneural interface implant on a human amputee for robotic hand control. Clinical<br>Neurophysiology, 2010, 121, 777-783.                                  | 0.7 | 367       |
| 111 | Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand. , 2010, 2010, 499-502.                                                                       |     | 24        |
| 112 | Bio-inspired controller for a dexterous prosthetic hand based on principal components analysis. ,<br>2009, 2009, 5022-5.                                                  |     | 13        |
| 113 | On the control of a robot hand by extracting neural signals from the PNS: Preliminary results from a human implantation. , 2009, 2009, 4586-9.                            |     | 12        |
| 114 | Referral of sensation to an advanced humanoid robotic hand prosthesis. Scandinavian Journal of<br>Plastic and Reconstructive Surgery and Hand Surgery, 2009, 43, 260-266. | 0.6 | 96        |
| 115 | Progress towards the development of the SmartHand transradial prosthesis. , 2009, , .                                                                                     |     | 31        |
| 116 | A Novel Concept for a Prosthetic Hand With a Bidirectional Interface: A Feasibility Study. IEEE<br>Transactions on Biomedical Engineering, 2009, 56, 2739-2743.           | 2.5 | 44        |
| 117 | On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User–Prosthesis<br>Interaction. IEEE Transactions on Robotics, 2008, 24, 170-184.                 | 7.3 | 409       |
| 118 | Embedded Hardware Architecture Based on Microcontrollers for the Action and Perception of a Transradial Prosthesis. , 2008, , .                                           |     | 8         |
| 119 | Design of a cybernetic hand for perception and action. Biological Cybernetics, 2006, 95, 629-644.                                                                         | 0.6 | 287       |
| 120 | Closed-loop controller for a bio-inspired multi-fingered underactuated prosthesis. , 0, , .                                                                               |     | 27        |
| 121 | Nature's Masterpiece: How Scientists Struggle to Replace the Human Hand. Frontiers for Young Minds,<br>0, 7, .                                                            | 0.8 | 0         |