
Massimo Mitolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190033/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	Two fast metaheuristic-based MPPT techniques for partially shaded photovoltaic system. International Journal of Electrical Power and Energy Systems, 2022, 137, 107567.	5.5	34
2	A Power-Efficient Multichannel Low-Pass Filter Based on the Cascaded Multiple Accumulate Finite Impulse Response (CMFIR) Structure for Digital Image Processing. Circuits, Systems, and Signal Processing, 2022, 41, 3864-3881.	2.0	2
3	Service Restoration Through Microgrid Formation in Distribution Networks: A Review. IEEE Access, 2022, 10, 46618-46632.	4.2	14
4	Guest Editorial: Fast, Superfast, and Ultra-Superfast Intelligent and Smart Charging Solutions for Electric Vehicles. IEEE Transactions on Industry Applications, 2022, 58, 5518-5519.	4.9	2
5	Improved Perturb and Observation Maximum Power Point Tracking Technique for Solar Photovoltaic Power Generation Systems. IEEE Systems Journal, 2021, 15, 3024-3035.	4.6	78
6	A Comparison of Special Bonding Techniques for Transmission and Distribution Cables Under Normal and Fault Conditions. IEEE Transactions on Industry Applications, 2021, 57, 101-109.	4.9	4
7	Small-Signal Stability Analysis for Microgrids Under Uncertainty Using MALANN Control Technique. IEEE Systems Journal, 2021, 15, 3797-3807.	4.6	4
8	Ceiling Fan Drives–Past, Present and Future. IEEE Access, 2021, 9, 44888-44904.	4.2	13
9	Adaptive Virtual Impedance-Based Reactive Power Sharing in Virtual Synchronous Generator Controlled Microgrids. IEEE Transactions on Industry Applications, 2021, 57, 46-60.	4.9	57
10	Systematic Approach for State-of-the-Art Architectures and System-on-Chip Selection for Heterogeneous IoT Applications. IEEE Access, 2021, 9, 25594-25622.	4.2	15
11	A Novel Solar Photovoltaic Fed TransZSI-DVR for Power Quality Improvement of Grid-Connected PV Systems. IEEE Access, 2021, 9, 7263-7279.	4.2	30
12	Forensic Inspections in the Time of Covid-19. , 2021, , .		1
13	Insulation Resistance and Failures of a High-Power Grid-Connected Photovoltaic Installation: A Case Study. IEEE Industry Applications Magazine, 2021, 27, 16-22.	0.4	2
14	Multilevel Converter Applications in the Area of Renewable Energy, More-Electric Propulsion, Electric Vehicles and Power Grid Integration. IEEE Transactions on Industry Applications, 2021, 57, 3050-3051.	4.9	5
15	A Methodology for Protection of Trees Against Lightning Strikes as a Measure to Prevent Fires and Loss of Human Life. IEEE Transactions on Industry Applications, 2021, 57, 3538-3544.	4.9	2
16	A Novel Asymmetrical 21-Level Inverter for Solar PV Energy System With Reduced Switch Count. IEEE Access, 2021, 9, 11761-11775.	4.2	46
17	Safety Protocols for Forensic Inspections in the Time of COVID-19: An Approach to Protect Practitioners. IEEE Industry Applications Magazine, 2021, , 2-6.	0.4	0

Automatic Pulse Sequence Selector for Novel PWM Technique: FPGA LabVIEW Implementation., 2021,,.

#	Article	IF	CITATIONS
19	A Model for Assessing the Magnitude and Distribution of Sheath Currents in Medium and High-Voltage Cable Lines. IEEE Transactions on Industry Applications, 2020, 56, 6250-6257.	4.9	17
20	A Model for the Study of Sheath Currents in Medium Voltage Cables for Industrial Application. , 2020, , .		3
21	A Single-Source High-Gain Switched-Capacitor Multilevel Inverter with Inherent Voltage Balancing. , 2020, , .		3
22	Novel Non-Isolated Quad-Switched Inductor Double-Switch Converter for DC Microgrid Application. , 2020, , .		14
23	Chain of X-Y Power Novel DC-DC Converters with Synchronous Grounded Switching for High Step-Up Renewable Power Applications. , 2020, , .		3
24	Study of Basic Units and Simulation of Passive Light Emitting Diode (LED) Driver Configurations. , 2020, , .		1
25	Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles. IEEE Access, 2020, 8, 178130-178166.	4.2	109
26	A Combined Deep Learning Approach for Time Series Prediction in Energy Environments. , 2020, , .		2
27	A Comparison of Special Bonding Techniques for Transmission and Distribution Cables. , 2020, , .		2
28	Improving Reactive Power Sharing in Microgrids by Adaptive Virtual Impedance Approach. , 2020, , .		2
29	Building Automation and Control Systems (BACS): a Review. , 2020, , .		7
30	Novel Hybrid High Gain Converter: Combination of Cuk and Buck-Boost Structures with Switched Inductor for DC Microgrid. , 2020, , .		5
31	Review of Health Prognostics and Condition Monitoring of Electronic Components. IEEE Access, 2020, 8, 75163-75183.	4.2	45
32	A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility. Energies, 2020, 13, 2312.	3.1	26
33	Implementation of Designed PV Integrated Controlled Converter System. IEEE Access, 2020, 8, 100905-100915.	4.2	6
34	Review of O&M Practices in PV Plants: Failures, Solutions, Remote Control, and Monitoring Tools. IEEE Journal of Photovoltaics, 2020, 10, 914-926.	2.5	33
35	Combined Harmonic Reduction and DC Voltage Regulation of A Single DC Source Five-Level Multilevel Inverter for Wind Electric System. Electronics (Switzerland), 2020, 9, 979.	3.1	14
36	Forensic Analysis of Fire in a Substation of a Commercial Center. IEEE Transactions on Industry Applications, 2020, 56, 3218-3223.	4.9	5

#	Article	IF	CITATIONS
37	Joint Operation Optimization of the Interdependent Water and Electricity Networks. , 2020, , .		4
38	New Generation Tester to Assess the Electrical Safety in Low-Voltage Distribution Systems. IEEE Transactions on Industry Applications, 2019, 55, 106-110.	4.9	4
39	On Electrical Safety in Academic Laboratories. IEEE Transactions on Industry Applications, 2019, 55, 5613-5620.	4.9	8
40	Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage. Energies, 2019, 12, 3395.	3.1	10
41	Electrical Safety of Resonant Grounding. , 2019, , .		4
42	Legal Liability of Professional Engineers: the Case of a Fire at a Shopping Center. , 2019, , .		2
43	Electrical Safety Considerations in Large-Scale Electric Vehicle Charging Stations. IEEE Transactions on Industry Applications, 2019, 55, 6603-6612.	4.9	126
44	Electrical Safety of Academic Laboratories. , 2019, , .		2
45	Electrical Safety Analysis in the Presence of Resonant Grounding Neutral. IEEE Transactions on Industry Applications, 2019, 55, 4483-4489.	4.9	17
46	On the Insulation Resistance in High-Power Free-Field Grid-Connected Photovoltaic Plants. , 2019, , .		3
47	A Brief History of Maxwell's Equations [History]. IEEE Industry Applications Magazine, 2019, 25, 8-13.	0.4	4
48	Energy Analysis in an Italian Opera House: Highlighting the Difficulties in Refurbishing Historic Buildings Using Energy-Savings Strategies. IEEE Industry Applications Magazine, 2019, 25, 45-51.	0.4	0
49	A Brief History of Electromagnetism [History]. IEEE Industry Applications Magazine, 2019, 25, 7-11.	0.4	2
50	Guest Editorial: Energy Efficiency, Building Automation, Metering, and Microgrids in Industrial and Commercial Power Systems. IEEE Transactions on Industry Applications, 2019, 55, 6997-6998.	4.9	3
51	On the Interconnections of HV–MV Stations to Global Grounding Systems. IEEE Transactions on Industry Applications, 2019, 55, 1126-1134.	4.9	9
52	A Cost-Effective Solution for Clearing High-Impedance Ground Faults in Overhead Low-Voltage Lines. IEEE Transactions on Industry Applications, 2019, 55, 1208-1213.	4.9	18
53	Electrical Safety of Plug-In Electric Vehicles: Shielding the Public from Shock. IEEE Industry Applications Magazine, 2018, 24, 58-63.	0.4	18
54	Inductive Power Transfer for Automotive Applications: State-of-the-Art and Future Trends. IEEE Transactions on Industry Applications, 2018, 54, 4069-4079.	4.9	142

#	Article	IF	CITATIONS
55	Support vector machine based dynamic load model using synchrophasor data. , 2018, , .		7
56	On the de-energization of over-head low-voltage lines under high-impedance fault conditions. , 2018, ,		2
57	Analysis of Causation of a Flour Dust Explosion in an Industrial Plant. IEEE Transactions on Industry Applications, 2017, 53, 5182-5186.	4.9	4
58	Analysis of causation of a dust explosion in industrial plant. , 2017, , .		1
59	Electrical safety of electric vehicles. , 2017, , .		11
60	Energy savings in integrated urban water systems: A case study. , 2017, , .		3
61	Arc Welding Processes: An Electrical Safety Analysis. IEEE Transactions on Industry Applications, 2017, 53, 819-825.	4.9	10
62	Currents Passing Through the Human Body: The Numerical Viewpoint. IEEE Transactions on Industry Applications, 2017, 53, 826-832.	4.9	6
63	Energy Savings in Integrated Urban Water Systems: A Case Study. IEEE Transactions on Industry Applications, 2017, 53, 5150-5154.	4.9	3
64	Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants. Energies, 2017, 10, 1409.	3.1	24
65	Safety against burns from hot touchable parts of electrical equipment. , 2016, , .		1
66	Interactions between cathodically protected pipelines and grounding systems. , 2016, , .		2
67	Electrical safety in arc welding processes. , 2016, , .		1
68	Interactions Between Cathodically Protected Pipelines and Grounding Systems. IEEE Transactions on Industry Applications, 2016, 52, 3694-3698.	4.9	7
69	Currents flowing through the human body: The numerical viewpoint. , 2016, , .		2
70	Safety Against Burns From Hot Touchable Parts of Electrical Equipment. IEEE Transactions on Industry Applications, 2016, 52, 3699-3704.	4.9	5
71	Inductive power transfer for automotive applications: State-of-the-art and future trends. , 2016, , .		15
			_

Functions and duties of the forensic electrical engineer. , 2016, , .

#	Article	IF	CITATIONS
73	Touch Voltage Analysis in Low-Voltage Power Systems Studies. IEEE Transactions on Industry Applications, 2016, 52, 556-559.	4.9	23
74	Electrical Model of Building Structures Under Ground-Fault Conditions—Part II. IEEE Transactions on Industry Applications, 2016, 52, 1285-1289.	4.9	7
75	District Heating Safety Issues: Interactions Between Grounding Systems and Thermal Installations. IEEE Transactions on Industry Applications, 2016, 52, 2040-2045.	4.9	3
76	Electrical model of building structures under ground-fault conditions. Part I. , 2015, , .		0
77	Electrical model of building structures under ground-fault conditions. Part II. , 2015, , .		1
78	District heating safety issues: Interactions between grounding systems and thermal installations. , 2015, , .		0
79	Electrical Model of Building Structures Under Ground-Fault Conditions, Part I IEEE Transactions on Industry Applications, 2015, , 1-1.	4.9	3
80	Safety procedures for electrical work in installations susceptible to unexpected sources of energy. , 2015, , .		2
81	On the new terminology introduced in Std. IEEE P3003.2 "Recommended Practice for Equipment Grounding and Bonding in Industrial and Commercial Power Systems". , 2015, , .		Ο
82	The Electrical Systems of Roadway Tunnels: Safety Design and Ecomanagement. IEEE Transactions on Industry Applications, 2015, 51, 1920-1927.	4.9	18
83	Electrical Safety of Aeronautical Ground Lighting Systems. IEEE Transactions on Industry Applications, 2015, 51, 2003-2008.	4.9	5
84	Touch voltage analysis in low-voltage power systems studies. , 2015, , .		1
85	Safe Utilization of Existing Grounding Systems for Expansions and Upgrades of Substations. IEEE Transactions on Industry Applications, 2015, 51, 5385-5389.	4.9	4
86	On The New Terminology Introduced in Std. IEEE P3003.2 "Recommended Practice for Equipment Grounding and Bonding in Industrial and Commercial Power Systems― IEEE Transactions on Industry Applications, 2015, , 1-1.	4.9	4
87	Electrical safety of aeronautical ground lighting systems. , 2014, , .		0
88	Interferences Phenomena Between Separate Grounding Systems. IEEE Transactions on Industry Applications, 2014, 50, 2853-2860.	4.9	28
89	Electrical Safety in the Industrial Workplace: An IEC Point of View. IEEE Transactions on Industry Applications, 2014, 50, 4329-4335.	4.9	20
90	Ground-Fault Loop Impedance Calculations in Low-Voltage Single-Phase Systems. IEEE Transactions on Industry Applications, 2014, 50, 1331-1337.	4.9	14

#	Article	IF	CITATIONS
91	Ground-Fault Conditions in Low-Voltage Systems: Potential Differences Between Exposed Conductive Parts. IEEE Industry Applications Magazine, 2014, 20, 33-39.	0.4	11
92	Electrical safety in the industrial workplace: An IEC point of view. , 2014, , .		1
93	On Outdoor Lighting Installations Grounding Systems. IEEE Transactions on Industry Applications, 2014, 50, 33-38.	4.9	5
94	An Effective Semianalytical Method for Simulating Grounding Grids. IEEE Transactions on Industry Applications, 2013, 49, 256-263.	4.9	40
95	Interferences phenomena between separate grounding systems. , 2013, , .		2
96	An analytical quantification of errors due to the use and misuse of cable positive-sequence impedances provided by the NEC. , 2013, , .		0
97	Ground-fault loop impedance calculations in single-phase systems. , 2013, , .		2
98	Thermal Sizing and Electric Shock Calculations for Equipment Grounding Conductors. IEEE Transactions on Industry Applications, 2013, 49, 1720-1725.	4.9	10
99	DC task team report. , 2013, , .		6
100	Economics of DC power distribution for motors. , 2013, , .		2
101	Numerical Simulation of Heart-Current Factors and Electrical Models of the Human Body. IEEE Transactions on Industry Applications, 2013, 49, 2290-2299.	4.9	13
102	Thermal sizing and electric shock calculations for equipment grounding conductors. , 2012, , .		2
103	User Specifications for Operational and Switching Procedures, a Working Group Report. IEEE Transactions on Industry Applications, 2012, 48, 225-228.	4.9	7
104	An Analytical Evaluation of the Factor \$k^{2}\$ for Protective Conductors. IEEE Transactions on Industry Applications, 2012, 48, 211-217.	4.9	10
105	Numerical simulation of heart-current factors and electrical models of the human body. , 2012, , .		1
106	An effective semi-analytical method for simulating grounding grids. , 2012, , .		1
107	A novel approach to the electrical safety of low-voltage installations: the TN-Island grounding system. European Transactions on Electrical Power, 2012, 22, 616-626.	1.0	2
108	An analytical evaluation of the factor k ² for protective conductors. , 2011, , .		1

#	Article	IF	CITATIONS
109	Grounding system in marinas: The micro-system approach. , 2011, , .		Ο
110	Electrical Safety of Street Light Systems. IEEE Transactions on Power Delivery, 2011, 26, 1952-1959.	4.3	12
111	Ecodesign of Low-Voltage Systems and Exposure to ELF Magnetic Fields. IEEE Transactions on Industry Applications, 2011, 47, 984-988.	4.9	4
112	To Bond or Not to Bond: That is the Question. IEEE Transactions on Industry Applications, 2011, 47, 989-995.	4.9	20
113	Grounding System in Marinas: The Microsystem Approach. IEEE Transactions on Industry Applications, 2011, 47, 2204-2209.	4.9	5
114	User specifications for operational and switching procedures, a working group report. , 2011, , .		14
115	Ecodesign of low-voltage systems and exposure to ELF magnetic fields. , 2010, , .		2
116	An Analytical Evaluation of the Prospective \${m l}^{2}{m t}\$ to Assess Short-Circuit Capabilities of Cables and Busways. IEEE Transactions on Power Delivery, 2010, 25, 1334-1339.	4.3	16
117	Of International Terminology and Wiring Methods Used in the Matter of Bonding and Earthing of Low-Voltage Power Systems. IEEE Transactions on Industry Applications, 2010, 46, 1089-1095.	4.9	31
118	Effects of High Fault Currents on Ground Grid Design. IEEE Transactions on Industry Applications, 2010, 46, 1118-1124.	4.9	42
119	Shall Masts and Metal Structures Supporting Antennas be Grounded?. IEEE Transactions on Industry Applications, 2010, 46, 1547-1551.	4.9	1
120	Of Electrical Distribution Systems With Multiple Grounded Neutrals. IEEE Transactions on Industry Applications, 2010, 46, 1541-1546.	4.9	28
121	Shock Hazard in the Presence of Protective Residual-Current Devices. IEEE Transactions on Industry Applications, 2010, 46, 1552-1557.	4.9	17
122	To Bond or Not to Bond: That Is the Question. , 2010, , .		1
123	Of International Terminology and Wiring Methods Used in the Matter of Bonding and Earthing of Low-Voltage Power Systems. , 2009, , .		4
124	Is it Possible to Calculate Safety: Safety and Risk Analysis of Standard Protective Measures Against Electric Shock. IEEE Industry Applications Magazine, 2009, 15, 31-35.	0.4	12
125	Grounding the Neutral of Electrical Systems Through Low-Resistance Grounding Resistors: An Application Case. IEEE Transactions on Industry Applications, 2008, 44, 1311-1316.	4.9	21
126	Protective Bonding Conductors: An IEC Point of View. IEEE Transactions on Industry Applications, 2008, 44, 1317-1321.	4.9	9

#	Article	IF	CITATIONS
127	On modeling utility substations equivalent source. , 2008, , .		1
128	Evaluation of the Prospective Joule Integral to Assess the Limit Short Circuit Capability of Cables and Busways. , 2008, , .		5
129	Low Voltage Distribution Transformers: Analysis of the Exposure to ELF Magnetic Fields. , 2007, , .		0
130	Safety and Risk Analysis of Standard Protective Measures Against Electric Shock. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	0
131	Evaluation of Voltage Exposures Due to AC/DC Stray Currents. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	0
132	Shock Hazard in the Presence of Protective Residual Current Devices. , 2007, , .		4
133	Shall Masts and Metal Structures Supporting Antennae be grounded?. , 2007, , .		0
134	On Outdoor Lighting Installations Grounding Systems. Conference Record - IAS Annual Meeting (IEEE) Tj ETQq0	0 0 rgBT /	Overlock 10 T

135	TN-Island Grounding System and the House of the Future. , 2006, , .		14
136	Effects of Electrical Currents and Bonding Requirements in Buildings. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .	0.0	10
137	Effects of High Fault Currents on Ground Grid Design. Conference Record - IAS Annual Meeting (IEEE) Tj ETQq1 1	0.784314	4 rgBT /Ove