
Martin Brüggemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8189687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. Environmental Science & Technology, 2020, 54, 3767-3782.	4.6	109
2	Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahighâ€Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,703.	1.2	82
3	Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols. Nature Communications, 2018, 9, 2101.	5.8	60
4	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	1.2	44
5	Real-Time Analysis of Ambient Organic Aerosols Using Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA-MS). Environmental Science & Technology, 2015, 49, 5571-5578.	4.6	43
6	Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds. Faraday Discussions, 2017, 200, 59-74.	1.6	42
7	Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEAChÂ2014 field study. Atmospheric Chemistry and Physics, 2017, 17, 1453-1469.	1.9	36
8	Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LC–HRMS/MS: contrasting summertime rural Germany and the North China Plain. Environmental Chemistry, 2019, 16, 333.	0.7	33
9	Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study. Atmospheric Chemistry and Physics, 2021, 21, 9089-9104.	1.9	25
10	Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H ₂ O ₂ and Particulate Sulfate in the Winter North China Plain. Environmental Science & Technology, 2021, 55, 7818-7830.	4.6	24
11	Capability of CI-Orbitrap for Gas-Phase Analysis in Atmospheric Chemistry: A Comparison with the CI-APi-TOF Technique. Analytical Chemistry, 2020, 92, 8142-8150.	3.2	19
12	Chemical Characteristics and Brown Carbon Chromophores of Atmospheric Organic Aerosols Over the Yangtze River Channel: A Cruise Campaign. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032497.	1.2	16
13	Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS. Journal of Mass Spectrometry, 2016, 51, 141-149.	0.7	15
14	Real-Time Detection of Gas-Phase Organohalogens from Aqueous Photochemistry Using Orbitrap Mass Spectrometry. ACS Earth and Space Chemistry, 2019, 3, 329-334.	1.2	15
15	Overestimation of Monoterpene Organosulfate Abundance in Aerosol Particles by Sampling in the Presence of SO ₂ . Environmental Science and Technology Letters, 2021, 8, 206-211.	3.9	15
16	Interfacial Photochemistry. , 2018, , 435-457.		9
17	Analysis of Organic Aerosols Using a Micro-Orifice Volatilization Impactor Coupled to an Atmospheric-Pressure Chemical Ionization Mass Spectrometer. European Journal of Mass Spectrometry, 2014, 20, 31-41.	0.5	7
18	Determination of highly polar compounds in atmospheric aerosol particles at ultraâ€trace levels using ion chromatography Orbitrap mass spectrometry. Journal of Separation Science, 2021, 44, 2343-2357.	1.3	6

#	Article	IF	CITATIONS
19	Nontarget Approach to Identify Complexing Agents in Atmospheric Aerosol and Rainwater Samples. Analytical Chemistry, 2022, 94, 8966-8974.	3.2	4
20	Atmospheric chemistry and the biosphere: general discussion. Faraday Discussions, 2017, 200, 195-228.	1.6	1