List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus <i>Cuscuta</i> . New Phytologist, 2021, 229, 2365-2377.	3.5	22
2	Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads. Computational and Structural Biotechnology Journal, 2021, 19, 2179-2189.	1.9	9
3	Characterization of repeat arrays in ultraâ€long nanopore reads reveals frequent origin of satellite DNA from retrotransposonâ€derived tandem repeats. Plant Journal, 2020, 101, 484-500.	2.8	76
4	Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin. Frontiers in Plant Science, 2020, 10, 1799.	1.7	37
5	Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	4.7	87
6	Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols, 2020, 15, 3745-3776.	5.5	144
7	Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. International Journal of Molecular Sciences, 2020, 21, 3488.	1.8	42
8	Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Molecular Biology and Evolution, 2020, 37, 2341-2356.	3.5	42
9	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	9.4	363
10	Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 2019, 10, 1.	1.3	265
11	Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Scientific Reports, 2018, 8, 5838.	1.6	66
12	TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 2017, 45, e111-e111.	6.5	222
13	Karyotypes and Distribution of Tandem Repeat Sequences in <i>Brassica nigra</i> Determined by Fluorescence in situ Hybridization. Cytogenetic and Genome Research, 2017, 152, 158-165.	0.6	10
14	Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. Frontiers in Plant Science, 2016, 7, 234.	1.7	31
15	Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus <i>Genlisea</i> . Plant Journal, 2015, 84, 1087-1099.	2.8	41
16	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	3.5	122
17	Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus. Plant Genome, 2015, 8, eplantgenome2015.04.0021.	1.6	45
18	Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of <i>CenH3</i> Gene in <i>Fabeae</i> Species. Molecular Biology and Evolution, 2015, 32, 1862-1879.	3.5	69

#	Article	IF	CITATIONS
19	Holocentromeres in <i>Rhynchospora</i> are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13633-13638.	3.3	96
20	In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE, 2015, 10, e0143424.	1.1	172
21	Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLoS ONE, 2014, 9, e98918.	1.1	54
22	The holocentric species <i><scp>L</scp>uzula elegans</i> shows interplay between centromere and largeâ€scale genome organization. Plant Journal, 2013, 73, 555-565.	2.8	86
23	Flow Sorting and Sequencing Meadow Fescue Chromosome 4F. Plant Physiology, 2013, 163, 1323-1337.	2.3	27
24	RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 2013, 29, 792-793.	1.8	619
25	Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genetics, 2012, 8, e1002777.	1.5	127
26	Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13343-13346.	3.3	173
27	Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution Â. Plant Cell, 2012, 24, 3559-3574.	3.1	221
28	Pea (Pisum sativum L.) in the Genomic Era. Agronomy, 2012, 2, 74-115.	1.3	172
29	Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia. PLoS ONE, 2011, 6, e27335.	1.1	97
30	A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica, 2011, 139, 1543-1555.	0.5	23
31	Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA, 2011, 2, 4.	1.3	186
32	Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annals of Botany, 2011, 107, 255-268.	1.4	78
33	Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics, 2010, 11, 378.	1.2	403
34	Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biology, 2010, 10, 204.	1.6	90
35	Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal, 2010, 63, 353-365.	2.8	112
36	Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics, 2010, 26, 2101-2108.	1.8	43

#	Article	IF	CITATIONS
37	Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene, 2009, 448, 198-206.	1.0	70
38	Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Molecular Genetics and Genomics, 2008, 280, 427-36.	1.0	9
39	Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biology, 2008, 8, 8.	1.6	65
40	The Centromeric Retrotransposons of Rice Are Transcribed and Differentially Processed by RNA Interference. Genetics, 2007, 176, 749-761.	1.2	63
41	Ogre elements — A distinct group of plant Ty3/gypsy-like retrotransposons. Gene, 2007, 390, 108-116.	1.0	55
42	Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics, 2007, 8, 427.	1.2	256
43	Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice. Molecular Biology and Evolution, 2006, 23, 2505-2520.	3.5	62
44	Significant Expansion of Vicia pannonica Genome Size Mediated by Amplification of a Single Type of Giant Retroelement. Genetics, 2006, 173, 1047-1056.	1.2	119
45	PICY, a new plant envelope-class LTR retrotransposon. Molecular Genetics and Genomics, 2005, 273, 43-53.	1.0	19
46	Structure, Divergence, and Distribution of the CRR Centromeric Retrotransposon Family in Rice. Molecular Biology and Evolution, 2005, 22, 845-855.	3.5	91
47	Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome, 2005, 48, 831-839.	0.9	24
48	Long-range organization of plant satellite repeats investigated using strand-specific FISH. Cytogenetic and Genome Research, 2005, 109, 58-62.	0.6	6
49	Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Molecular Biology, 2003, 53, 399-410.	2.0	92
50	Zaba: a novel miniature transposable element present in genomes of legume plants. Molecular Genetics and Genomics, 2003, 269, 624-631.	1.0	14
51	Karyotype Analysis of Four Vicia Species using In Situ Hybridization with Repetitive Sequences. Annals of Botany, 2003, 91, 921-926.	1.4	61
52	Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Research, 2002, 10, 63-71.	1.0	69
53	Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome, 2001, 44, 716-728.	0.9	46
54	Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Molecular Biology, 2001, 45, 229-244.	2.0	37

#	Article	IF	CITATIONS
55	Molecular and cytogenetic analysis of repetitive DNA in pea (<i>Pisum sativum</i> L.). Genome, 2001, 44, 716-728.	0.9	28
56	Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Molecular Genetics and Genomics, 2000, 263, 741-751.	2.4	49
57	Cloning and Characterization of New Repetitive Sequences in Field Bean (Vicia faba L.). Annals of Botany, 2000, 85, 157.	1.4	Ο
58	Cloning and Characterization of New Repetitive Sequences in Field Bean (Vicia fabaL.). Annals of Botany, 1999, 83, 535-541.	1.4	21
59	Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Science, 1998, 137, 205-215.	1.7	40