Christophe Darcel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singleâ€&tep Sustainable Production of Hydroxyâ€Functionalized 2â€Imidazolines from Carbohydrates. ChemSusChem, 2022, 15, .	6.8	4
2	Tandem Fe/Zn or Fe/In Catalysis for the Selective Synthesis of Primary and Secondary AminesÂvia Selective Reduction of Primary Amides. ChemCatChem, 2022, 14, .	3.7	8
3	Alkenes as hydrogen trappers to control the regio-selective ruthenium(<scp>ii</scp>) catalyzed <i>ortho</i> C–H silylation of amides and anilides. Organic Chemistry Frontiers, 2021, 8, 514-521.	4.5	14
4	Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles. Journal of Organic Chemistry, 2021, 86, 1023-1036.	3.2	42
5	Pierre Dixneuf: A Pioneering Career in Organometallic Chemistry Highlighting Ruthenium as a Star Metal in Homogeneous Catalysis. Organometallics, 2021, 40, 1551-1554.	2.3	0
6	A Concise Route to Cyclic Amines from Nitroarenes and Ketoacids under Iron atalyzed Hydrosilylation Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3859-3865.	4.3	18
7	Synthesis of Lactams by Reductive Amination of Carbonyl Derivatives with ï‰ â€Amino Fatty Acids under Hydrosilylation Conditions. European Journal of Organic Chemistry, 2021, 2021, 5536.	2.4	4
8	Iron atalyzed hydrosilylation of diacids in the presence of amines: a new route to cyclic amines. ChemCatChem, 2020, 12, 5449-5455.	3.7	9
9	Sustainable oxidative cleavage of catechols for the synthesis of muconic acid and muconolactones including lignin upgrading. Green Chemistry, 2020, 22, 6204-6211.	9.0	21
10	Organophosphorus and Iron Catalysis: Good Partners for Hydrometalation of Olefins and Alkynes. Journal of Organic Chemistry, 2020, 85, 14298-14306.	3.2	14
11	Design of P-Chirogenic Aminophosphine–Phosphinite Ligands at Both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions. Journal of Organic Chemistry, 2020, 85, 14391-14410.	3.2	7
12	Iron atalysed Switchable Synthesis of Pyrrolidines <i>vs</i> Pyrrolidinones by Reductive Amination of Levulinic Acid Derivatives <i>via</i> Hydrosilylation. Advanced Synthesis and Catalysis, 2019, 361, 1781-1786.	4.3	43
13	Multi-Step Reactions Involving Iron-Catalysed Reduction and Hydrogen Borrowing Reactions. European Journal of Inorganic Chemistry, 2019, 2019, 2469-2469.	2.0	0
14	Iron atalysed Reductive Amination of Carbonyl Derivatives with ωâ€Amino Fatty Acids to Access Cyclic Amines. ChemSusChem, 2019, 12, 3008-3012.	6.8	17
15	Multiâ€Step Reactions Involving Ironâ€Catalysed Reduction and Hydrogen Borrowing Reactions. European Journal of Inorganic Chemistry, 2019, 2019, 2471-2487.	2.0	21
16	Iron Catalysis in Reduction and Hydrometalation Reactions. Chemical Reviews, 2019, 119, 2550-2610.	47.7	338
17	Iron atalyzed Dehydrogenative Borylation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 3649-3654.	4.3	36
18	Nâ€Heterocyclic Carbene Iron Silyl Hydride Complexes. Israel Journal of Chemistry, 2017, 57, 1216-1221.	2.3	11

CHRISTOPHE DARCEL

#	Article	IF	CITATIONS
19	Ising-type Magnetic Anisotropy and Slow Relaxation of the Magnetization in Four-Coordinate Amido-Pyridine Fe ^{II} Complexes. Inorganic Chemistry, 2016, 55, 10968-10977.	4.0	17
20	Direct synthesis of dicarbonyl PCP-iron hydride complexes and catalytic dehydrogenative borylation of styrene. Dalton Transactions, 2016, 45, 11101-11108.	3.3	29
21	Amine synthesis <i>via</i> transition metal homogeneous catalysed hydrosilylation. RSC Advances, 2016, 6, 57603-57625.	3.6	106
22	1,2,4â€Triazoleâ€Based Nâ€Heterocyclic CarbÂene Nickel Complexes – Synthesis and Catalytic Application. European Journal of Inorganic Chemistry, 2015, 2015, 5226-5231.	2.0	12
23	Ironâ€Catalyzed αâ€Alkylation of Ketones with Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14483-14486.	13.8	230
24	When iron met phosphines: a happy marriage for reduction catalysis. Green Chemistry, 2015, 17, 2283-2303.	9.0	85
25	Iron-Catalyzed Reduction and Hydroelementation Reactions. Topics in Organometallic Chemistry, 2015, , 173-216.	0.7	25
26	Iron-Catalyzed C–H Borylation of Arenes. Journal of the American Chemical Society, 2015, 137, 4062-4065.	13.7	166
27	Knölker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides. Organometallics, 2015, 34, 4521-4528.	2.3	56
28	Cationic iron(II) complexes of the mixed cyclopentadienyl (Cp) and the N-heterocyclic carbene (NHC) ligands as effective precatalysts for the hydrosilylation of carbonyl compounds. Journal of Organometallic Chemistry, 2014, 762, 81-87.	1.8	31
29	[(NHC)Fe(CO) ₄] Efficient Preâ€catalyst for Selective Hydroboration of Alkenes. ChemCatChem, 2014, 6, 763-766.	3.7	70
30	Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. RSC Advances, 2014, 4, 25892.	3.6	25
31	Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chemical Communications, 2014, 50, 14229-14232.	4.1	62
32	Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chemical Communications, 2013, 49, 3691.	4.1	64
33	(Cyclopentadienyl)iron(II) Complexes of N-Heterocyclic Carbenes Bearing a Malonate or Imidate Backbone: Synthesis, Structure, and Catalytic Potential in Hydrosilylation. Organometallics, 2013, 32, 4643-4655.	2.3	67
34	Synthesis of new iron–NHC complexes as catalysts for hydrosilylation reactions. Applied Organometallic Chemistry, 2013, 27, 459-464.	3.5	32
35	Cobalt Carbonylâ€Based Catalyst for Hydrosilylation of Carboxamides. Advanced Synthesis and Catalysis, 2013, 355, 3358-3362.	4.3	70
36	Cyclopentadienyl N-heterocyclic carbene–nickel complexes as efficient pre-catalysts for the hydrosilylation of imines. Catalysis Science and Technology, 2013, 3, 3111.	4.1	41

CHRISTOPHE DARCEL

#	Article	IF	CITATIONS
37	A convenient nickel-catalysed hydrosilylation of carbonyl derivatives. Catalysis Science and Technology, 2013, 3, 81-84.	4.1	34
38	Nâ€Heterocyclic Carbene Ligands and Iron: An Effective Association for Catalysis. Advanced Synthesis and Catalysis, 2013, 355, 19-33.	4.3	167
39	Selective Reduction of Esters to Aldehydes under the Catalysis of Wellâ€Defined NHC–Iron Complexes. Angewandte Chemie - International Edition, 2013, 52, 8045-8049.	13.8	138
40	Iron piano-stool phosphine complexes for catalytic hydrosilylation reaction. Inorganica Chimica Acta, 2012, 380, 301-307.	2.4	49
41	Selective switchable iron-catalyzed hydrosilylation of carboxylic acids. Chemical Communications, 2012, 48, 10514.	4.1	102
42	Ruthenium(ii) catalysed synthesis of unsaturated oxazolines via arene C–H bond alkenylation. Green Chemistry, 2012, 14, 2706.	9.0	58
43	NHC-carbene cyclopentadienyl iron based catalyst for a general and efficient hydrosilylation of imines. Chemical Communications, 2012, 48, 151-153.	4.1	116
44	Cyclopentadienyl–NHC Iron Complexes for Solventâ€Free Catalytic Hydrosilylation of Aldehydes and Ketones. European Journal of Inorganic Chemistry, 2012, 2012, 1333-1337.	2.0	95
45	Phosphaneâ€Pyridine Iron Complexes: Synthesis, Characterization and Application in Reductive Amination through the Hydrosilylation Reaction. European Journal of Inorganic Chemistry, 2012, 2012, 3546-3550.	2.0	50
46	Iron atalyzed Hydrosilylation of Esters. Advanced Synthesis and Catalysis, 2012, 354, 1879-1884.	4.3	104
47	Sequential Catalysis for the Production of Sterically Hindered Amines: Ru(II)-Catalyzed C–H Bond Activation and Hydrosilylation of Imines. ACS Catalysis, 2011, 1, 1221-1224.	11.2	80
48	Wellâ€Ðefined Cyclopentadienyl NHC Iron Complex as the Catalyst for Efficient Hydrosilylation of Amides to Amines and Nitriles. ChemCatChem, 2011, 3, 1747-1750.	3.7	136
49	Iron Dihydride Complex as the Preâ€catalyst for Efficient Hydrosilylation of Aldehydes and Ketones Under Visible Light Activation. Advanced Synthesis and Catalysis, 2011, 353, 1279-1284.	4.3	89
50	Nâ€Heterocyclic Carbene Pianoâ€Stool Iron Complexes as Efficient Catalysts for Hydrosilylation of Carbonyl Derivatives. Advanced Synthesis and Catalysis, 2011, 353, 239-244.	4.3	113
51	Enantiodivergent synthesis of P-chirogenic phosphines. Comptes Rendus Chimie, 2010, 13, 1213-1226.	0.5	48
52	Modular P-Chirogenic Aminophosphane-Phosphinite Ligands for Rh-Catalyzed Asymmetric Hydrogenation: A New Model for Prediction of Enantioselectivity. European Journal of Organic Chemistry, 2007, 2007, 2078-2090.	2.4	39
53	Configurational Stability of Chlorophosphines. Inorganic Chemistry, 2003, 42, 420-427.	4.0	47
54	Highly Enantiomerically Enriched Chlorophosphine Boranes:  Synthesis and Applications as P-Chirogenic Electrophilic Blocks. Journal of Organic Chemistry, 2003, 68, 4293-4301.	3.2	97

#	Article	IF	CITATIONS
55	Versatile synthesis of P-chiral (ephedrine) AMPP ligands via their borane complexes. Structural consequences in Rh-catalyzed hydrogenation of methyl α-acetamidocinnamate. Tetrahedron: Asymmetry, 1999, 10, 4729-4743.	1.8	50
56	Selective Iron Catalyzed Synthesis of Nâ€alkylated Indolines and Indoles. Chemistry - A European Journal, 0, , .	3.3	4