Vladimir Cech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188826/publications.pdf Version: 2024-02-01

VIADIMIR CECH

#	Article	IF	CITATIONS
1	Surface topography affects the nanoindentation data. Thin Solid Films, 2022, 745, 139105.	1.8	7
2	Nonthermal tetravinylsilane plasma used for thinâ€film deposition: Plasma chemistry controls thinâ€film chemistry. Plasma Processes and Polymers, 2022, 19, 2100192.	3.0	3
3	The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite. Polymers, 2021, 13, 593.	4.5	8
4	Low temperature plasma polymerization: An effective process to enhance the basalt fibre/matrix interfacial adhesion. Composites Communications, 2021, 27, 100769.	6.3	24
5	Basalt fibre surface modification via plasma polymerization of tetravinylsilane/oxygen mixtures for improved interfacial adhesion with unsaturated polyester matrix. Materials Chemistry and Physics, 2021, 274, 125106.	4.0	16
6	Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose, 2020, 27, 511-530.	4.9	20
7	Characterization of a-CSi:H films prepared by PECVD in terms of adhesion. Surface and Coatings Technology, 2020, 385, 125375.	4.8	3
8	Plasma Nanotechnology for Controlling Chemical and Physical Properties of Organosilicon Nanocoatings. Materials Today Communications, 2020, 24, 101234.	1.9	5
9	Plasma Nanocoatings Developed to Control the Shear Strength of Polymer Composites. Polymers, 2019, 11, 1188.	4.5	6
10	Optical properties of the crystalline silicon wafers described using the universal dispersion model. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 062907.	1.2	3
11	Engineering the interfacial adhesion in basalt/epoxy composites by plasma polymerization. Composites Part A: Applied Science and Manufacturing, 2019, 122, 67-76.	7.6	24
12	Continuous surface modification of glass fibers in a roll-to-roll plasma-enhanced CVD reactor for glass fiber/polyester composites. Composites Part A: Applied Science and Manufacturing, 2019, 121, 244-253.	7.6	22
13	Optical Properties of Oxidized Plasma-Polymerized Organosilicones and Their Correlation with Mechanical and Chemical Parameters. Materials, 2019, 12, 539.	2.9	10
14	Surface modification of glass fibers by oxidized plasma coatings to improve interfacial shear strength in GF/polyester composites. Polymer Composites, 2019, 40, E186.	4.6	23
15	Functional interlayers with controlled adhesion developed for polymer composites. Thin Solid Films, 2018, 656, 37-43.	1.8	13
16	Effect of chemical modification on the mechanical properties of plasma-polymerized organosilicones. Progress in Organic Coatings, 2018, 119, 85-90.	3.9	11
17	Chemical depth profile of layered a-CSiO:H nanocomposites. Applied Surface Science, 2018, 456, 941-950.	6.1	8
18	Further Progress in Functional Interlayers with Controlled Mechanical Properties Designed for Glass Fiber/Polyester Composites. Fibers, 2018, 6, 58.	4.0	15

VLADIMIR CECH

#	Article	IF	CITATIONS
19	Characteristics of SiOx-containing hard film prepared by low temperature plasma enhanced chemical vapor deposition using hexamethyldisilazane or vinyltrimethylsilane and post oxygen plasma treatment. Materials Chemistry and Physics, 2017, 189, 183-190.	4.0	10
20	Characterization of interlayer adhesion on single glass fibers and planar glass using the nanoscratch test technique. Thin Solid Films, 2017, 636, 353-358.	1.8	10
21	Elastic Modulus and Hardness of Plasmaâ€Polymerized Organosilicones Evaluated by Nanoindentation Techniques. Plasma Processes and Polymers, 2015, 12, 864-881.	3.0	24
22	The critical influence of surface topography on nanoindentation measurements of a-SiC:H films. Surface and Coatings Technology, 2015, 261, 114-121.	4.8	18
23	Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Composites Part A: Applied Science and Manufacturing, 2014, 58, 84-89.	7.6	54
24	Multilayer and functionally gradient films of plasma polymers intended as compatible interlayers for hybrid materials. Surface and Coatings Technology, 2014, 254, 49-53.	4.8	7
25	The glass fiber–polymer matrix interface/interphase characterized by nanoscale imaging techniques. Composites Science and Technology, 2013, 83, 22-26.	7.8	90
26	Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings. Thin Solid Films, 2013, 544, 593-596.	1.8	3
27	Self-Assembled Monolayers of Vinyltriethoxysilane and Vinyltrichlorosilane Deposited on Silicon Dioxide Surfaces. Journal of Adhesion Science and Technology, 2012, 26, 2543-2554.	2.6	3
28	Depth profile of mechanical properties of plasma-polymerized tetravinylsilane films evaluated by cyclic nanoindentation. Surface and Coatings Technology, 2011, 205, S470-S474.	4.8	11
29	Plasma polymer multilayers of organosilicones and their optical properties controlled by RF power. Surface and Coatings Technology, 2011, 205, S451-S454.	4.8	3
30	Mechanical Properties of Plasmaâ€Polymerized Tetravinylsilane Films. Plasma Processes and Polymers, 2011, 8, 138-146.	3.0	13
31	Mechanical Properties of Individual Layers in aâ€6iC:H Multilayer Film. Plasma Processes and Polymers, 2011, 8, 1107-1115.	3.0	11
32	Aging of silicon-based dielectric coatings deposited by plasma polymerization. Thin Solid Films, 2011, 519, 2168-2171.	1.8	4
33	A Fiber-Bundle Pull-out Test for Surface-Modified Glass Fibers in GF/Polyester Composite. Composite Interfaces, 2011, 18, 309-322.	2.3	11
34	Plasma polymer films of tetravinylsilane modified by UV irradiation. Surface and Coatings Technology, 2010, 205, S177-S181.	4.8	5
35	Mechanical properties of plasma polymer film evaluated by conventional and alternative nanoindentation techniques. Surface and Coatings Technology, 2010, 205, S286-S289.	4.8	7

1

VLADIMIR CECH

#	Article	IF	CITATIONS
37	Spectroscopic ellipsometry study of plasma-polymerised vinyltriethoxysilane films. Journal of Materials Science: Materials in Electronics, 2009, 20, 451-455.	2.2	1
38	Single layer and multilayered films of plasma polymers analyzed by nanoindentation and spectroscopic ellipsometry. Thin Solid Films, 2009, 517, 6034-6037.	1.8	14
39	Effect of RF-plasma deposition parameters on the composition and properties of organic layers deposited on glass fibers. Composites Science and Technology, 2009, 69, 2485-2490.	7.8	4
40	Wettability of plasma-polymerized vinyltriethoxysilane film. Chemical Papers, 2009, 63, .	2.2	0
41	Functional multilayer coatings of tetravinylsilane. Surface and Coatings Technology, 2008, 202, 5505-5507.	4.8	6
42	Chemistry of Plasmaâ€Polymerized Vinyltriethoxysilane Controlled by Deposition Conditions. Plasma Processes and Polymers, 2008, 5, 745-752.	3.0	15
43	Correlation between mechanical, optical and chemical properties of thin films deposited by PECVD. Surface and Coatings Technology, 2008, 202, 5572-5575.	4.8	12
44	Plasma-polymerized organosilicones as engineered interlayers in glass fiber/polyester composites. Composite Interfaces, 2007, 14, 321-334.	2.3	24
45	Oxygen and water vapor gas barrier poly(ethylene naphthalate) films by deposition of SiOx plasma polymers from mixture of tetramethoxysilane and oxygen. Journal of Applied Polymer Science, 2007, 104, 915-925.	2.6	17
46	Physico-chemical properties of plasma-polymerized tetravinylsilane. Surface and Coatings Technology, 2007, 201, 5512-5517.	4.8	24
47	Influence of Oxygen on the Chemical Structure of Plasma Polymer Films Deposited from a Mixture of Tetravinylsilane and Oxygen Gas. Plasma Processes and Polymers, 2007, 4, S776-S780.	3.0	16
48	Plasma Polymer Film as a Model Interlayer for Polymer Composites. IEEE Transactions on Plasma Science, 2006, 34, 1148-1155.	1.3	20
49	Plasma-polymerized versus polycondensed thin films of vinyltriethoxysilane. Thin Solid Films, 2006, 502, 181-187.	1.8	22
50	Burning conditions of non-thermal Ar-plasma at continuous and pulsed mode. European Physical Journal D, 2006, 56, B1320-B1325.	0.4	0
51	Deposition of Single Plasma-Polymerized Vinyltriethoxysilane Films and their Layered Structure. Japanese Journal of Applied Physics, 2006, 45, 8440-8444.	1.5	6
52	Adhesion of pp-VTES films to glass substrates and their durability in aqueous environments. International Journal of Adhesion and Adhesives, 2005, 25, 121-125.	2.9	17
53	Mechanical and optical properties of plasma-polymerized vinyltriethoxysilane. Surface and Coatings Technology, 2005, 200, 468-471.	4.8	21
54	RF-power-controlled young's modulus of plasma-polymerized organosilicon films. Journal of Materials Science, 2005, 40, 5099-5102.	3.7	16

VLADIMIR CECH

#	Article	IF	CITATIONS
55	Basic characteristics of the a-SiOCâ^¶H thin films prepared by PE CVD. European Physical Journal D, 2004, 54, C937-C942.	0.4	3
56	XPS study of siloxane plasma polymer films. Surface and Coatings Technology, 2003, 174-175, 1159-1163.	4.8	22
57	Functional interlayers in multiphase materials. Surface and Coatings Technology, 2003, 174-175, 858-862.	4.8	6
58	The influence of surface modifications of glass on glass fiber/polyester interphase properties. Journal of Adhesion Science and Technology, 2003, 17, 1299-1320.	2.6	39
59	Plasma surface treatment and modification of glass fibers. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1367-1372.	7.6	72
60	Testing of adhesives for bonding of polymer composites. International Journal of Adhesion and Adhesives, 2002, 22, 291-295.	2.9	44
61	Analysis of annealed thin polymer films prepared from dichloro(methyl)phenylsilane by plasma polymerization. Journal of Applied Polymer Science, 2001, 82, 2106-2112.	2.6	5
62	Determination of Density of Localized States in a-Si:H from the Time Relaxation of Space-Charge-Limited Conductivity. Physica Status Solidi A, 2001, 187, 487-491.	1.7	0
63	Thin plasma-polymerized films of dichloro(methyl)phenylsilane. European Physical Journal D, 2000, 50, 356-364.	0.4	1
64	Modeling of the l–V characteristics in amorphous silicon n+-i-n+ devices. Journal of Applied Physics, 2000, 88, 5374-5380.	2.5	7
65	NEW PROGRESS IN COMPOSITE INTERPHASES: A USE OF PLASMA TECHNOLOGIES. , 2000, , 246-252.		6
66	Characterization of poly(methylphenylsilane) prepared by plasma polymerization. Macromolecular Symposia, 1999, 148, 321-332.	0.7	7
67	Time relaxation of space-charge-limited conductivity in a-Si:H. Journal of Non-Crystalline Solids, 1998, 227-230, 185-189.	3.1	6
68	Determination of the bulk density of states in a-Si:H by steady-state SCLC. Solid-State Electronics, 1997, 41, 81-86.	1.4	11
69	Microscopic Mobility as a Function of Electric Field. Physica Status Solidi A, 1992, 129, 223-229.	1.7	0
70	A use of the meyer-neldel rule for an evaluation of SCLC. Physica Status Solidi A, 1991, 127, 179-186.	1.7	1
71	Determination of trap concentrations and energy levels in insulators and semiconductors from steady-state space-charge-limited currents. Physica Status Solidi A, 1988, 106, 167-172.	1.7	4

52 Surface-Free Energy Of Silicon-Based Plasma Polymer Films. , 0, , 333-348.