## Francesc Illas Riera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188575/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature<br>Materials, 2011, 10, 310-315.                                                                                                                                                            | 13.3 | 748       |
| 2  | A New Type of Strong Metal–Support Interaction and the Production of H <sub>2</sub> through the<br>Transformation of Water on Pt/CeO <sub>2</sub> (111) and<br>Pt/CeO <sub><i>x</i></sub> /TiO <sub>2</sub> (110) Catalysts. Journal of the American Chemical Society,<br>2012, 134, 8968-8974. | 6.6  | 682       |
| 3  | First-principlesLDA+UandGGA+Ustudy of cerium oxides: Dependence on the effective U parameter.<br>Physical Review B, 2007, 75, .                                                                                                                                                                 | 1.1  | 634       |
| 4  | Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous<br>Materials. Journal of the American Chemical Society, 1996, 118, 8071-8076.                                                                                                                   | 6.6  | 490       |
| 5  | A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with<br>Nanoparticles of Gold on TiO <sub>2</sub> Catalysts:  A Cooperative Effect between Gold and the<br>Support. Journal of the American Chemical Society, 2007, 129, 16230-16237.                  | 6.6  | 458       |
| 6  | Remarks on the Proper Use of the Broken Symmetry Approach to Magnetic Coupling. Journal of<br>Physical Chemistry A, 1997, 101, 7860-7866.                                                                                                                                                       | 1.1  | 421       |
| 7  | Maximum Nobleâ€Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum.<br>Angewandte Chemie - International Edition, 2014, 53, 10525-10530.                                                                                                                             | 7.2  | 384       |
| 8  | Effect of Fock exchange on the electronic structure and magnetic coupling in NiO. Physical Review B, 2002, 65, .                                                                                                                                                                                | 1.1  | 360       |
| 9  | Ab Initio Cluster Model Calculations on the Chemisorption of CO2 and SO2 Probe Molecules on MgO and CaO (100) Surfaces. A Theoretical Measure of Oxide Basicity. Journal of the American Chemical Society, 1994, 116, 10152-10158.                                                              | 6.6  | 301       |
| 10 | Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. Journal of Electron Spectroscopy and Related Phenomena, 1999, 100, 215-236.                                                                                               | 0.8  | 280       |
| 11 | Magnetic coupling in biradicals, binuclear complexes and wide-gap insulators: a survey of ab initio<br>wave function and density functional theory approaches. Theoretical Chemistry Accounts, 2000, 104,<br>265-272.                                                                           | 0.5  | 268       |
| 12 | Antiferromagnetic Exchange Interactions from Hybrid Density Functional Theory. Physical Review Letters, 1997, 79, 1539-1542.                                                                                                                                                                    | 2.9  | 264       |
| 13 | Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals.<br>Journal of Chemical Theory and Computation, 2014, 10, 3832-3839.                                                                                                                          | 2.3  | 245       |
| 14 | MXenes: New Horizons in Catalysis. ACS Catalysis, 2020, 10, 13487-13503.                                                                                                                                                                                                                        | 5.5  | 239       |
| 15 | CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane.<br>Journal of Catalysis, 2013, 307, 162-169.                                                                                                                                                | 3.1  | 214       |
| 16 | Performance of the M06 family of exchange-correlation functionals for predicting magnetic coupling in organic and inorganic molecules. Journal of Chemical Physics, 2008, 128, 114103.                                                                                                          | 1.2  | 208       |
| 17 | Decomposition of the chemisorption bond by constrained variations: Order of the variations and construction of the variational spaces. Journal of Chemical Physics, 1992, 96, 8962-8970.                                                                                                        | 1.2  | 205       |
| 18 | A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics. Physical Chemistry Chemical Physics, 2006, 8, 1645.                                                                                                                          | 1.3  | 200       |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. Journal of Materials Chemistry, 2010, 20, 10535. | 6.7  | 192       |
| 20 | Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces.<br>Physical Chemistry Chemical Physics, 2013, 15, 12617.                                     | 1.3  | 189       |
| 21 | Establishing the Accuracy of Broadly Used Density Functionals in Describing Bulk Properties of Transition Metals. Journal of Chemical Theory and Computation, 2013, 9, 1631-1640.              | 2.3  | 184       |
| 22 | A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 2005, 122, 174709.              | 1.2  | 180       |
| 23 | The bending machine: CO <sub>2</sub> activation and hydrogenation on δ-MoC(001) and<br>β-Mo <sub>2</sub> C(001) surfaces. Physical Chemistry Chemical Physics, 2014, 16, 14912-14921.          | 1.3  | 175       |
| 24 | An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band<br>Structure Calculations. Journal of Physical Chemistry C, 2017, 121, 18862-18866.         | 1.5  | 165       |
| 25 | Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chemical Communications, 2010, 46, 5936.                                                                               | 2.2  | 160       |
| 26 | First Principles Analysis of the Stability and Diffusion of Oxygen Vacancies in Metal Oxides. Physical<br>Review Letters, 2004, 93, 225502.                                                    | 2.9  | 158       |
| 27 | Graphene on Ni(111): Coexistence of Different Surface Structures. Journal of Physical Chemistry<br>Letters, 2011, 2, 759-764.                                                                  | 2.1  | 158       |
| 28 | Ab Initio Modeling of the Metalâ^'Support Interface:Â The Interaction of Ni, Pd, and Pt on MgO(100).<br>Journal of Physical Chemistry B, 1998, 102, 1430-1436.                                 | 1.2  | 156       |
| 29 | Understanding the reactivity of metallic nanoparticles: beyond the extended surface model for catalysis. Chemical Society Reviews, 2014, 43, 4922-4939.                                        | 18.7 | 156       |
| 30 | Transition metal carbides as novel materials for CO <sub>2</sub> capture, storage, and activation.<br>Energy and Environmental Science, 2016, 9, 141-144.                                      | 15.6 | 155       |
| 31 | First-principles calculations of the atomic and electronic structure ofFcenters in the bulk and on the<br>(001) surface ofSrTiO3. Physical Review B, 2006, 73, .                               | 1.1  | 152       |
| 32 | CO <sub>2</sub> abatement using two-dimensional MXene carbides. Journal of Materials Chemistry A, 2018, 6, 3381-3385.                                                                          | 5.2  | 152       |
| 33 | On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites. Chemical Communications, 2007, , 3371.                                   | 2.2  | 146       |
| 34 | Transition metal adatoms on graphene: A systematic density functional study. Carbon, 2015, 95, 525-534.                                                                                        | 5.4  | 144       |
| 35 | Active Sites for H <sub>2</sub> Adsorption and Activation in Au/TiO <sub>2</sub> and the Role of the Support. Journal of Physical Chemistry A, 2009, 113, 3750-3757.                           | 1.1  | 142       |
| 36 | Adhesion energy of Cu atoms on the MgO(001) surface. Journal of Chemical Physics, 1999, 110, 4873-4879.                                                                                        | 1.2  | 140       |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO <sub>2</sub> : The Metal/C<br>Ratio as a Key Factor Defining Activity, Selectivity, and Stability. Journal of the American Chemical<br>Society, 2016, 138, 8269-8278. | 6.6 | 140       |
| 38 | Studies of the Cuî—,O bond in cupric oxide by X-ray photoelectron spectroscopy and ab initio electronic structure models. Journal of Electron Spectroscopy and Related Phenomena, 1992, 59, 255-269.                                         | 0.8 | 138       |
| 39 | Accounting for van der Waals interactions between adsorbates and surfaces in density functional theory based calculations: selected examples. RSC Advances, 2013, 3, 13085.                                                                  | 1.7 | 138       |
| 40 | Low-Basicity Oxygen Atoms: A Key in the Search for Propylene Epoxidation Catalysts. Angewandte<br>Chemie - International Edition, 2007, 46, 2055-2058.                                                                                       | 7.2 | 134       |
| 41 | Bonding Mechanisms of Graphene on Metal Surfaces. Journal of Physical Chemistry C, 2012, 116, 7360-7366.                                                                                                                                     | 1.5 | 133       |
| 42 | Magnetic coupling in ionic solids studied by density functional theory. Journal of Chemical Physics, 1998, 108, 2519-2527.                                                                                                                   | 1.2 | 131       |
| 43 | Multiconfigurational Perturbation Theory:Â An Efficient Tool to Predict Magnetic Coupling<br>Parameters in Biradicals, Molecular Complexes, and Ionic Insulators. Journal of Physical Chemistry A,<br>2001, 105, 11371-11378.                | 1.1 | 129       |
| 44 | CO <sub>2</sub> Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. Journal of Physical Chemistry Letters, 2012, 3, 2275-2280.                                                                                           | 2.1 | 129       |
| 45 | Methane Activation by Platinum: Critical Role of Edge and Corner Sites of Metal Nanoparticles.<br>Chemistry - A European Journal, 2010, 16, 6530-6539.                                                                                       | 1.7 | 126       |
| 46 | Density functional studies of model cerium oxide nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 5730.                                                                                                                         | 1.3 | 125       |
| 47 | Why Copper Is Intrinsically More Selective than Silver in Alkene Epoxidation:Â Ethylene Oxidation on Cu(111) versus Ag(111). Journal of the American Chemical Society, 2005, 127, 10774-10775.                                               | 6.6 | 124       |
| 48 | Extent and limitations of density-functional theory in describing magnetic systems. Physical Review B, 2004, 70, .                                                                                                                           | 1.1 | 122       |
| 49 | On the Promoting Role of Ag in Selective Hydrogenation Reactions over Pdâ^'Ag Bimetallic Catalysts:  A<br>Theoretical Study. Journal of Physical Chemistry C, 2007, 111, 6852-6856.                                                          | 1.5 | 121       |
| 50 | Ultralow-Density Nanocage-Based Metal-Oxide Polymorphs. Physical Review Letters, 2007, 99, 235502.                                                                                                                                           | 2.9 | 119       |
| 51 | Theoretical analysis of the bonding of oxygen to Cu(100). Physical Review B, 1990, 42, 10852-10857.                                                                                                                                          | 1.1 | 118       |
| 52 | Local character of magnetic coupling in ionic solids. Physical Review B, 1999, 59, R6593-R6596.                                                                                                                                              | 1.1 | 117       |
| 53 | Electronic structure of a neutral oxygen vacancy inSrTiO3. Physical Review B, 2003, 68, .                                                                                                                                                    | 1.1 | 116       |
| 54 | Restricted Ensemble-Referenced Kohnâ^'Sham versus Broken Symmetry Approaches in Density<br>Functional Theory:  Magnetic Coupling in Cu Binuclear Complexes. Journal of Chemical Theory and<br>Computation, 2007, 3, 764-774.                 | 2.3 | 113       |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Accurate Prediction of Large Antiferromagnetic Interactions in High-TcHgBa2Canâ^'1CunO2n+2+δ(n=2,3)<br>Superconductor Parent Compounds. Physical Review Letters, 2000, 84, 1579-1582.                                                                     | 2.9  | 111       |
| 56 | Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity. Journal of Catalysis, 2011, 278, 50-58.                                                                                            | 3.1  | 110       |
| 57 | Critical Size for O <sub>2</sub> Dissociation by Au Nanoparticles. ChemPhysChem, 2009, 10, 348-351.                                                                                                                                                       | 1.0  | 108       |
| 58 | Density Functional Theory Study of the Interaction of Cu, Ag, and Au Atoms with the Regular<br>CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2010, 114, 1934-1941.                                                                     | 1.5  | 108       |
| 59 | Effective and Highly Selective CO Generation from CO <sub>2</sub> Using a Polycrystalline<br>α-Mo <sub>2</sub> C Catalyst. ACS Catalysis, 2017, 7, 4323-4335.                                                                                             | 5.5  | 108       |
| 60 | Formation of Superoxide Anions on Ceria Nanoparticles by Interaction of Molecular Oxygen with Ce <sup>3+</sup> Sites. Journal of Physical Chemistry C, 2011, 115, 5817-5822.                                                                              | 1.5  | 107       |
| 61 | Discrepancy between common local aromaticity measures in a series of carbazole derivatives. Physical<br>Chemistry Chemical Physics, 2004, 6, 314-318.                                                                                                     | 1.3  | 106       |
| 62 | Comparative study of the molecular electrostatic potential obtained from different wavefunctions.<br>Reliability of the semiempirical MNDO wavefunction. Journal of Computational Chemistry, 1990, 11,<br>416-430.                                        | 1.5  | 105       |
| 63 | Measures of ionicity of alkaline-earth oxides from the analysis ofab initiocluster wave functions.<br>Physical Review B, 1993, 48, 11573-11582.                                                                                                           | 1.1  | 105       |
| 64 | Approaching nanoscale oxides: models and theoretical methods. Chemical Society Reviews, 2009, 38, 2657.                                                                                                                                                   | 18.7 | 105       |
| 65 | Ab Initio Study of the Exchange Coupling in Oxalato-Bridged Cu(II) Dinuclear Complexes. Journal of<br>Physical Chemistry A, 2000, 104, 9983-9989.                                                                                                         | 1.1  | 103       |
| 66 | Ab initio theoretical comparative study of magnetic coupling inKNiF3sandK2NiF4s. Physical Review B, 1997, 55, 4129-4137.                                                                                                                                  | 1.1  | 102       |
| 67 | When the Reporter Induces the Effect: Unusual IR spectra of CO on Au1/MgO(001)/Mo(001). Angewandte<br>Chemie - International Edition, 2006, 45, 2633-2635.                                                                                                | 7.2  | 101       |
| 68 | The conversion of CO <sub>2</sub> to methanol on orthorhombic β-Mo <sub>2</sub> C and<br>Cu/β-Mo <sub>2</sub> C catalysts: mechanism for admetal induced change in the selectivity and activity.<br>Catalysis Science and Technology, 2016, 6, 6766-6777. | 2.1  | 101       |
| 69 | Comment on "About the calculation of exchange coupling constants using density-functional theory:<br>The role of the self-interaction error―[J. Chem. Phys. 123, 164110 (2005)]. Journal of Chemical Physics,<br>2006, 124, 107101.                       | 1.2  | 99        |
| 70 | Understanding Ceria Nanoparticles from First-Principles Calculations. Journal of Physical Chemistry<br>C, 2007, 111, 10142-10145.                                                                                                                         | 1.5  | 99        |
| 71 | On modelling the interaction of CO on the MgO(100) surface. Surface Science, 1995, 327, 59-73.                                                                                                                                                            | 0.8  | 96        |
| 72 | Influence of step sites in the molecular mechanism of the water gas shift reaction catalyzed by copper. Journal of Catalysis, 2009, 268, 131-141.                                                                                                         | 3.1  | 96        |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Adsorption of Cu, Pd, and Cs Atoms on Regular and Defect Sites of the SiO2Surface. Journal of the American Chemical Society, 1999, 121, 813-821.                                                                                                                                | 6.6  | 94        |
| 74 | MXenes as promising catalysts for water dissociation. Applied Catalysis B: Environmental, 2020, 260, 118191.                                                                                                                                                                    | 10.8 | 94        |
| 75 | A Systematic Study of the Structure and Bonding of Halogens on Low-Index Transition Metal Surfaces.<br>Journal of Physical Chemistry B, 2006, 110, 11894-11906.                                                                                                                 | 1.2  | 93        |
| 76 | Nature of Ag Islands and Nanoparticles on the CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2012, 116, 1122-1132.                                                                                                                                            | 1.5  | 92        |
| 77 | Good performance of the M06 family of hybrid meta generalized gradient approximation density<br>functionals on a difficult case: CO adsorption on MgO(001). Journal of Chemical Physics, 2008, 129,<br>124710.                                                                  | 1.2  | 90        |
| 78 | Validation of Koopmans' theorem for density functional theory binding energies. Physical Chemistry<br>Chemical Physics, 2015, 17, 4015-4019.                                                                                                                                    | 1.3  | 90        |
| 79 | Effects of deposited Pt particles on the reducibility of CeO2(111). Physical Chemistry Chemical Physics, 2011, 13, 11384.                                                                                                                                                       | 1.3  | 89        |
| 80 | Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation,<br>desulfurization and hydrogenation reactions. Physical Chemistry Chemical Physics, 2012, 14, 427-438.                                                                                 | 1.3  | 89        |
| 81 | Role of Auâ^'C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) toward<br>Molecular Oxygen Dissociation. Journal of the American Chemical Society, 2010, 132, 3177-3186.                                                                        | 6.6  | 88        |
| 82 | When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO <sub>2</sub> Nanoparticles<br>in the 1–6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.<br>Journal of Chemical Theory and Computation, 2017, 13, 1785-1793. | 2.3  | 87        |
| 83 | Descriptors controlling the catalytic activity of metallic surfaces toward water splitting. Journal of Catalysis, 2010, 276, 92-100.                                                                                                                                            | 3.1  | 86        |
| 84 | Importance of Madelung potential in quantum chemical modeling of ionic surfaces. Journal of<br>Computational Chemistry, 1997, 18, 617-628.                                                                                                                                      | 1.5  | 85        |
| 85 | Optical properties of surface and bulk F centers in MgO from ab initio cluster model calculations.<br>Journal of Chemical Physics, 1998, 108, 7835-7841.                                                                                                                        | 1.2  | 85        |
| 86 | Structure and Properties of Zirconia Nanoparticles from Density Functional Theory Calculations.<br>Journal of Physical Chemistry C, 2016, 120, 4392-4402.                                                                                                                       | 1.5  | 85        |
| 87 | Theoretical study of bulk and surface oxygen and aluminum vacancies in뱉^Al2O3. Physical Review B, 2004, 69, .                                                                                                                                                                   | 1.1  | 84        |
| 88 | Effect of the exchange-correlation potential and of surface relaxation on the description of the H2O dissociation on Cu(111). Journal of Chemical Physics, 2009, 130, 224702.                                                                                                   | 1.2  | 84        |
| 89 | Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133, 024701.                                                                                                           | 1.2  | 83        |
| 90 | Reactivity of Transition Metals (Pd, Pt, Cu, Ag, Au) toward Molecular Hydrogen Dissociation: Extended<br>Surfaces versus Particles Supported on TiC(001) or Small Is Not Always Better and Large Is Not Always<br>Bad. Journal of Physical Chemistry C, 2011, 115, 11666-11672. | 1.5  | 82        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | When Langmuir Is Too Simple:H2Dissociation on Pd(111) at High Coverage. Physical Review Letters, 2004, 93, 146103.                                                                             | 2.9  | 81        |
| 92  | Catalyst size matters: Tuning the molecular mechanism of the water–gas shift reaction on titanium carbide based compounds. Journal of Catalysis, 2008, 260, 103-112.                           | 3.1  | 81        |
| 93  | Functionalization of Î <sup>3</sup> -graphyne by transition metal adatoms. Carbon, 2017, 120, 63-70.                                                                                           | 5.4  | 81        |
| 94  | Bandgap Engineering of Graphene by Physisorbed Adsorbates. Advanced Materials, 2011, 23, 2638-2643.                                                                                            | 11.1 | 80        |
| 95  | Theoretical Approaches to Excited-State-Related Phenomena in Oxide Surfaces. Chemical Reviews, 2013, 113, 4456-4495.                                                                           | 23.0 | 80        |
| 96  | Predicting size-dependent emergence of crystallinity in nanomaterials: titania nanoclusters versus<br>nanocrystals. Nanoscale, 2017, 9, 1049-1058.                                             | 2.8  | 79        |
| 97  | Ab Initio Cluster Model Study of the Chemisorption of CO on Low-Index Platinum Surfaces. Journal of Physical Chemistry B, 1999, 103, 5246-5255.                                                | 1.2  | 78        |
| 98  | Theoretical Confirmation of the Enhanced Facility to Increase Oxygen Vacancy Concentration in TiO <sub>2</sub> by Iron Doping. Journal of Physical Chemistry C, 2010, 114, 6511-6517.          | 1.5  | 78        |
| 99  | Spin Symmetry Requirements in Density Functional Theory: The Proper Way to Predict Magnetic<br>Coupling Constants in Molecules and Solids. Theoretical Chemistry Accounts, 2006, 116, 587-597. | 0.5  | 77        |
| 100 | Effect of electron correlation on the electrostatic potential distribution of molecules. Journal of the American Chemical Society, 1991, 113, 5203-5211.                                       | 6.6  | 76        |
| 101 | Quantum-Chemical Study of Electrochemical Promotion in Catalysis. The Journal of Physical Chemistry, 1996, 100, 16653-16661.                                                                   | 2.9  | 76        |
| 102 | Evidence for spontaneous CO2 activation on cobalt surfaces. Chemical Physics Letters, 2008, 454, 262-268.                                                                                      | 1.2  | 76        |
| 103 | Rigorous characterization of oxygen vacancies in ionic oxides. Physical Review B, 2002, 66, .                                                                                                  | 1.1  | 75        |
| 104 | Size-Dependent Level Alignment between Rutile and Anatase TiO <sub>2</sub> Nanoparticles:<br>Implications for Photocatalysis. Journal of Physical Chemistry Letters, 2017, 8, 5593-5598.       | 2.1  | 75        |
| 105 | Madelung fields from optimized point charges forab initiocluster model calculations on ionic systems. Journal of Computational Chemistry, 1993, 14, 680-684.                                   | 1.5  | 74        |
| 106 | Interaction of CO and NO with PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 8017-8023.                                                                                       | 1.2  | 74        |
| 107 | Reliability of range-separated hybrid functionals for describing magnetic coupling in molecular systems. Journal of Chemical Physics, 2008, 129, 184110.                                       | 1.2  | 74        |
| 108 | Edge sites as a gate for subsurface carbon in palladium nanoparticles. Journal of Catalysis, 2009, 266, 59-63.                                                                                 | 3.1  | 71        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Adsorption, Oxidation State, and Diffusion of Pt Atoms on the CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2010, 114, 14202-14207.                                                                                               | 1.5  | 71        |
| 110 | A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis. ACS Catalysis, 2020, 10, 6900-6907.                                                                                                 | 5.5  | 71        |
| 111 | Selected versus complete configuration interaction expansions. Journal of Chemical Physics, 1991, 95, 1877-1883.                                                                                                                                     | 1.2  | 70        |
| 112 | Desulfurization of Thiophene on Au/TiC(001): Auâ^'C Interactions and Charge Polarization. Journal of the American Chemical Society, 2009, 131, 8595-8602.                                                                                            | 6.6  | 70        |
| 113 | Prediction of core level binding energies in density functional theory: Rigorous definition of initial and final state contributions and implications on the physical meaning of Kohn-Sham energies. Journal of Chemical Physics, 2015, 142, 214102. | 1.2  | 70        |
| 114 | Towards anab initiodescription of magnetism in ionic solids. Physical Review Letters, 1993, 71, 3549-3552.                                                                                                                                           | 2.9  | 69        |
| 115 | H2Cracking at SiO2Defect Centersâ€. Journal of Physical Chemistry A, 2000, 104, 4674-4684.                                                                                                                                                           | 1.1  | 69        |
| 116 | Dissociation of SO <sub>2</sub> on Au/TiC(001): Effects of Au–C Interactions and Charge Polarization.<br>Angewandte Chemie - International Edition, 2008, 47, 6685-6689.                                                                             | 7.2  | 69        |
| 117 | Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts. Applied Catalysis B: Environmental, 2020, 267, 118719.                                                                                  | 10.8 | 69        |
| 118 | Electronic Structure of F-Doped Bulk Rutile, Anatase, and Brookite Polymorphs of TiO <sub>2</sub> .<br>Journal of Physical Chemistry C, 2012, 116, 12738-12746.                                                                                      | 1.5  | 68        |
| 119 | BrÃ,nsted–Evans–Polanyi Relationship for Transition Metal Carbide and Transition Metal Oxide<br>Surfaces. Journal of Physical Chemistry C, 2013, 117, 4168-4171.                                                                                     | 1.5  | 67        |
| 120 | Charge Polarization at a Au–TiC Interface and the Generation of Highly Active and Selective Catalysts<br>for the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie - International Edition, 2014,<br>53, 11270-11274.                     | 7.2  | 67        |
| 121 | Facile Heterogeneously Catalyzed Nitrogen Fixation by MXenes. ACS Catalysis, 2020, 10, 5049-5056.                                                                                                                                                    | 5.5  | 67        |
| 122 | Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes. Surface Science, 2005, 574, 297-305.                                                                                                 | 0.8  | 66        |
| 123 | Density Functional Study of the Adsorption of Atomic Oxygen on the (001) Surface of Early<br>Transition-Metal Carbides. Journal of Physical Chemistry C, 2007, 111, 1307-1314.                                                                       | 1.5  | 66        |
| 124 | Adsorption of gold on TiC(001): Au–C interactions and charge polarization. Journal of Chemical Physics, 2007, 127, 211102.                                                                                                                           | 1.2  | 66        |
| 125 | On the interaction of polycyclic aromatic compounds with graphene. Carbon, 2012, 50, 2482-2492.                                                                                                                                                      | 5.4  | 66        |
| 126 | Origin of the vibrational shift of CO chemisorbed on Pt(111). Physical Review B, 1995, 52, 12372-12379.                                                                                                                                              | 1.1  | 65        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Theoretical aspects of heterogeneous catalysis: Applications of density functional methods. Catalysis<br>Today, 2005, 105, 2-16.                                                                                      | 2.2  | 65        |
| 128 | Ab initio study of the optical transitions of F centers at low-coordinated sites of the MgO surface.<br>Surface Science, 1999, 429, 217-228.                                                                          | 0.8  | 64        |
| 129 | On the difficulties of present theoretical models to predict the oxidation state of atomic Au adsorbed on regular sites of CeO[sub 2](111). Journal of Chemical Physics, 2009, 131, 094702.                           | 1.2  | 64        |
| 130 | Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2.<br>Topics in Catalysis, 2015, 58, 159-173.                                                                             | 1.3  | 64        |
| 131 | Challenges of modeling nanostructured materials for photocatalytic water splitting. Chemical Society Reviews, 2022, 51, 3794-3818.                                                                                    | 18.7 | 64        |
| 132 | Can corundum be described as an ionic oxide?. Journal of Chemical Physics, 1993, 99, 6818-6823.                                                                                                                       | 1.2  | 62        |
| 133 | Dynamic Ion Pairs in the Adsorption of Isolated Water Molecules on Alkaline-Earth Oxide (001)<br>Surfaces. Physical Review Letters, 2008, 100, 016101.                                                                | 2.9  | 62        |
| 134 | Origin of magnetic coupling inLa2CuO4. Physical Review B, 1996, 53, 945-951.                                                                                                                                          | 1.1  | 61        |
| 135 | On the bonding mechanism of CO to Pt(111) and its effect on the vibrational frequency of chemisorbed CO. Surface Science, 1997, 376, 279-296.                                                                         | 0.8  | 61        |
| 136 | Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. Journal of Chemical Physics, 2006, 125, 074711.                                        | 1.2  | 61        |
| 137 | Density functional studies of coinage metal nanoparticles: scalability of their properties to bulk.<br>Theoretical Chemistry Accounts, 2008, 120, 565-573.                                                            | 0.5  | 61        |
| 138 | SO <sub>2</sub> Adsorption on Pt(111) and Oxygen Precovered Pt(111): A Combined Infrared Reflection<br>Absorption Spectroscopy and Density Functional Study. Journal of Physical Chemistry C, 2011, 115,<br>479-491.  | 1.5  | 61        |
| 139 | Formation of One-Dimensional Electronic States along the Step Edges of CeO <sub>2</sub> (111). ACS<br>Nano, 2012, 6, 1126-1133.                                                                                       | 7.3  | 61        |
| 140 | Inexpensive determinations of valence virtual MOs for CI calculations. Chemical Physics, 1986, 107, 361-380.                                                                                                          | 0.9  | 60        |
| 141 | Ab initiostudy of the magnetic interactions in the spin-ladder compoundSrCu2O3. Physical Review B, 1999, 60, 3457-3464.                                                                                               | 1.1  | 60        |
| 142 | A Systematic Density Functional Study of Molecular Oxygen Adsorption and Dissociation on the (001)<br>Surface of Group IVâ^'VI Transition Metal Carbides. Journal of Physical Chemistry C, 2007, 111,<br>16982-16989. | 1.5  | 60        |
| 143 | Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides. Journal of Computational Chemistry, 2017, 38, 781-789.         | 1.5  | 60        |
| 144 | Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties. Journal of Chemical Theory and Computation, 2018, 14, 395-403.            | 2.3  | 60        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Evidence for oxygen-island formation on Al(111): Cluster-model theory and x-ray photoelectron spectroscopy. Physical Review B, 1991, 44, 9025-9034.                                                                                | 1.1 | 59        |
| 146 | Ionic-covalent transition in titanium oxides. Physical Review B, 1994, 50, 13974-13980.                                                                                                                                            | 1.1 | 59        |
| 147 | Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives.<br>Physical Chemistry Chemical Physics, 2020, 22, 6797-6803.                                                                       | 1.3 | 59        |
| 148 | Relative Stabilities of Low Index and Stepped CeO <sub>2</sub> Surfaces from Hybrid and GGA +<br><i>U</i> Implementations of Density Functional Theory. Journal of Physical Chemistry C, 2011, 115,<br>3716-3721.                  | 1.5 | 58        |
| 149 | Theoretical assessment of graphene-metal contacts. Journal of Chemical Physics, 2013, 138, 244701.                                                                                                                                 | 1.2 | 58        |
| 150 | Electric field effects in heterogeneous catalysis. Journal of Molecular Catalysis A, 1997, 119, 263-273.                                                                                                                           | 4.8 | 57        |
| 151 | Magnetic structure ofLi2CuO2: Fromab initiocalculations to macroscopic simulations. Physical Review B, 2002, 66, .                                                                                                                 | 1.1 | 57        |
| 152 | Room Temperature Methane Capture and Activation by Ni Clusters Supported on TiC(001): Effects of<br>Metal–Carbide Interactions on the Cleavage of the C–H Bond. Journal of the American Chemical<br>Society, 2019, 141, 5303-5313. | 6.6 | 57        |
| 153 | Electronic structure and magnetic interactions of the spin-chain compoundsCa2CuO3andSr2CuO3.<br>Physical Review B, 2000, 63, .                                                                                                     | 1.1 | 56        |
| 154 | Three Lanthanum MOF Polymorphs: Insights into Kinetically and Thermodynamically Controlled Phases. Inorganic Chemistry, 2009, 48, 4707-4713.                                                                                       | 1.9 | 56        |
| 155 | Density functional theory model study of size and structure effects on water dissociation by platinum nanoparticles. Journal of Chemical Physics, 2012, 137, 034701.                                                               | 1.2 | 56        |
| 156 | The Triplet–Singlet Gap in the <i>m</i> -Xylylene Radical: A Not So Simple One. Journal of Chemical Theory and Computation, 2014, 10, 335-345.                                                                                     | 2.3 | 56        |
| 157 | Study of the Heterometallic Bond Nature in PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 141-147.                                                                                                                | 1.2 | 55        |
| 158 | Two-dimensional nitrides as highly efficient potential candidates for CO <sub>2</sub> capture and activation. Physical Chemistry Chemical Physics, 2018, 20, 17117-17124.                                                          | 1.3 | 55        |
| 159 | Thickness biased capture of CO <sub>2</sub> on carbide MXenes. Physical Chemistry Chemical Physics, 2019, 21, 23136-23142.                                                                                                         | 1.3 | 55        |
| 160 | The structural relaxation of the α-Al2O3(0001) – an investigation of potential errors. Chemical Physics<br>Letters, 2001, 341, 412-418.                                                                                            | 1.2 | 54        |
| 161 | Density Functional Theory Study of the Adsorption of Au Atom on Cerium Oxide: Effect of<br>Low-Coordinated Surface Sites. Journal of Physical Chemistry C, 2009, 113, 4948-4954.                                                   | 1.5 | 54        |
| 162 | Affordable Estimation of Solvation Contributions to the Adsorption Energies of Oxygenates on Metal Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 5578-5582.                                                           | 1.5 | 54        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Treating large intermediate spaces in the CIPSI method through a direct selected CI algorithm.<br>Theoretica Chimica Acta, 1992, 82, 229-238.                                                             | 0.9  | 53        |
| 164 | On the Mechanism of Formation of Metal Nanowires by Selfâ€Assembly. Angewandte Chemie -<br>International Edition, 2007, 46, 7094-7097.                                                                    | 7.2  | 53        |
| 165 | Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of<br>TiO <sub>2</sub> Nanoparticles. Journal of Chemical Theory and Computation, 2016, 12, 3751-3763.            | 2.3  | 53        |
| 166 | Kinetic Monte Carlo simulations of the water gas shift reaction on Cu(1 1 1) from density functional theory based calculations. Journal of Catalysis, 2016, 333, 217-226.                                 | 3.1  | 53        |
| 167 | Assessing <i>GW</i> Approaches for Predicting Core Level Binding Energies. Journal of Chemical Theory and Computation, 2018, 14, 877-883.                                                                 | 2.3  | 53        |
| 168 | Density functional study of CO and NO adsorption on Ni-doped MgO(100). Journal of Chemical Physics, 2010, 132, 104701.                                                                                    | 1.2  | 52        |
| 169 | Magnetic Coupling in Transition-Metal Binuclear Complexes by Spin-Flip Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation, 2011, 7, 3523-3531.                          | 2.3  | 52        |
| 170 | High efficiency of Pt2+- CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2016, 197, 262-270.                                          | 10.8 | 52        |
| 171 | Density functional studies on the adsorption and decomposition of SO2 on Cu(100). Journal of Chemical Physics, 2001, 115, 454-465.                                                                        | 1.2  | 51        |
| 172 | Surface model and exchange-correlation functional effects on the description of Pd/α-Al2O3(0001).<br>Journal of Chemical Physics, 2002, 116, 1684-1691.                                                   | 1.2  | 51        |
| 173 | DFT Study on Ce-Doped Anatase TiO <sub>2</sub> : Nature of Ce <sup>3+</sup> and Ti <sup>3+</sup><br>Centers Triggered by Oxygen Vacancy Formation. Journal of Physical Chemistry C, 2014, 118, 9677-9689. | 1.5  | 51        |
| 174 | Molecular structure and vibrational frequencies of AlxOy (x=1,2; y⩽3) derived from ab initio calculations. Chemical Physics Letters, 1988, 144, 373-377.                                                  | 1.2  | 50        |
| 175 | Absence of collective effects in Heisenberg systems with localized magnetic moments. Physical Review B, 1997, 56, 5069-5072.                                                                              | 1.1  | 50        |
| 176 | The extent of relaxation of the $\rm \hat{l}\pm$ -Al2O3 (0001) surface and the reliability of empirical potentials. Surface Science, 2000, 445, 448-460.                                                  | 0.8  | 50        |
| 177 | The competition between chemical bonding and magnetism in the adsorption of atomic Ni on MgO(100).<br>Journal of Chemical Physics, 2001, 115, 8172-8177.                                                  | 1.2  | 50        |
| 178 | Effectivet-Jmodel Hamiltonian parameters of monolayered cuprate superconductors fromab initioelectronic structure calculations. Physical Review B, 2002, 65, .                                            | 1.1  | 50        |
| 179 | Performance of the Ï"-dependent functionals in predicting the magnetic coupling of ionic antiferromagnetic insulators. Journal of Chemical Physics, 2004, 120, 3811-3816.                                 | 1.2  | 50        |
| 180 | Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Physical Review B, 2005, 72, .                                                                               | 1.1  | 50        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Exploring Ce3+/Ce4+ cation ordering in reduced ceria nanoparticles using interionic-potential and density-functional calculations. Journal of Chemical Physics, 2009, 131, 064701.                                                                     | 1.2 | 50        |
| 182 | O2 adsorption and dissociation on neutral, positively and negatively charged Aun (n = 5–79) clusters.<br>Physical Chemistry Chemical Physics, 2010, 12, 10723.                                                                                         | 1.3 | 50        |
| 183 | Performance of the TPSS Functional on Predicting Core Level Binding Energies of Main Group<br>Elements Containing Molecules: A Good Choice for Molecules Adsorbed on Metal Surfaces. Journal<br>of Chemical Theory and Computation, 2016, 12, 324-331. | 2.3 | 50        |
| 184 | Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces. Surface Science, 2017, 656, 24-32.                                                                                                            | 0.8 | 50        |
| 185 | On the prediction of core level binding energies in molecules, surfaces and solids. Physical Chemistry Chemical Physics, 2018, 20, 8403-8410.                                                                                                          | 1.3 | 50        |
| 186 | Ab initiocluster-model study of the on-top chemisorption of F and Cl on Si(111) and Ge(111) surfaces.<br>Physical Review B, 1985, 31, 8068-8075.                                                                                                       | 1.1 | 49        |
| 187 | Performance of a modified hybrid functional in the simultaneous description of stoichiometric and reduced TiO <sub>2</sub> polymorphs. Physical Chemistry Chemical Physics, 2016, 18, 12357-12367.                                                     | 1.3 | 49        |
| 188 | Size dependent structural and polymorphic transitions in ZnO: from nanocluster to bulk. Nanoscale, 2017, 9, 10067-10074.                                                                                                                               | 2.8 | 49        |
| 189 | On the geometric structure of the (0001) hematite surface. Surface Science, 2004, 558, 4-14.                                                                                                                                                           | 0.8 | 48        |
| 190 | On the Performance of Au(111) for Ethylene Epoxidation:  A Density Functional Study. Journal of<br>Physical Chemistry B, 2006, 110, 13310-13313.                                                                                                       | 1.2 | 48        |
| 191 | Electric field effects on the vibrational frequency and bonding mechanism of CO on Pt(111).<br>Electrochimica Acta, 1998, 44, 1213-1220.                                                                                                               | 2.6 | 47        |
| 192 | Ab initio systematic determination of the t–J effective Hamiltonian parameters for superconducting<br>Cu-oxides. Chemical Physics Letters, 1999, 307, 102-108.                                                                                         | 1.2 | 47        |
| 193 | On the accurate prediction of the optical absorption energy of F-centers in MgO from explicitly correlated ab initio cluster model calculations. Journal of Chemical Physics, 2001, 115, 1435-1439.                                                    | 1.2 | 47        |
| 194 | Influence of the exchange–correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theoretical Chemistry Accounts, 2009, 123, 119-126.                                                          | 0.5 | 47        |
| 195 | Predicting core level binding energies shifts: Suitability of the projector augmented wave approach as implemented in VASP. Journal of Computational Chemistry, 2017, 38, 518-522.                                                                     | 1.5 | 47        |
| 196 | Apparent Scarcity of Low-Density Polymorphs of Inorganic Solids. Physical Review Letters, 2010, 104, 175503.                                                                                                                                           | 2.9 | 46        |
| 197 | Adding Pieces to the CO/Pt(111) Puzzle: The Role of Dispersion. Journal of Physical Chemistry C, 2017, 121, 3970-3977.                                                                                                                                 | 1.5 | 46        |
| 198 | Approximate natural orbitals and the convergence of a second order multireference manyâ€body perturbation theory (CIPSI) algorithm. Journal of Chemical Physics, 1988, 89, 6376-6384.                                                                  | 1.2 | 45        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Ferromagnetic Copper(II) Complex Containing Ferrocenecarboxylato Bridging Ligands. Inorganic Chemistry, 2000, 39, 4560-4565.                                                                                   | 1.9 | 45        |
| 200 | Adsorption and oxidation of NO on Au(111) surface: Density functional studies. Chemical Physics Letters, 2006, 422, 412-416.                                                                                   | 1.2 | 45        |
| 201 | Promoter and poisoning effects on NO-catalyzed dissociation on bimetallic RhCu(111) surfaces.<br>Journal of Catalysis, 2006, 239, 431-440.                                                                     | 3.1 | 45        |
| 202 | Existence of multi-radical and closed-shell semiconducting states in post-graphene organic Dirac materials. Nature Communications, 2017, 8, 1957.                                                              | 5.8 | 45        |
| 203 | Understanding the interplay between size, morphology and energy gap in photoactive<br>TiO <sub>2</sub> nanoparticles. Nanoscale, 2019, 11, 9032-9041.                                                          | 2.8 | 45        |
| 204 | Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. Nature Communications, 2022, 13, 419.                                                   | 5.8 | 45        |
| 205 | Ab initio cluster model approach to the chemisorption of NH3 on Pt(111). Surface Science, 1999, 430, 18-28.                                                                                                    | 0.8 | 44        |
| 206 | Ab Initio Theory of Metal Deposition on SiO2. 1. Cun(n= 1â^'5) Clusters on Nonbridging Oxygen Defects.<br>Journal of Physical Chemistry B, 1999, 103, 1712-1718.                                               | 1.2 | 44        |
| 207 | Magneto-structural correlations in binuclear copper(ii) compounds bridged by a<br>ferrocenecarboxylato(–1) and an hydroxo- or methoxo-ligands. Dalton Transactions, 2005, , 2322.                              | 1.6 | 44        |
| 208 | Towards an understanding of promoter action in heterogeneously catalyzed ethene epoxidation: Why chlorine is the best halogen. Journal of Catalysis, 2008, 260, 380-383.                                       | 3.1 | 44        |
| 209 | Description of magnetic interactions in strongly correlated solids via range-separated hybrid functionals. Physical Review B, 2009, 79, .                                                                      | 1.1 | 44        |
| 210 | Carbon on Platinum Substrates: From Carbidic to Graphitic Phases on the (111) Surface and on Nanoparticles. Journal of Physical Chemistry A, 2009, 113, 11963-11973.                                           | 1.1 | 44        |
| 211 | Unravelling Morphological and Topological Energy Contributions of Metal Nanoparticles.<br>Nanomaterials, 2022, 12, 17.                                                                                         | 1.9 | 44        |
| 212 | Ab initio calculations of 29Si solid state NMR chemical shifts of silane and silanol groups in silica.<br>Chemical Physics Letters, 2000, 326, 523-529.                                                        | 1.2 | 43        |
| 213 | Theoretical study of dehydrogenation and isomerisation reactions of propylene on Pt(111). Journal of Catalysis, 2006, 241, 115-122.                                                                            | 3.1 | 43        |
| 214 | Dependence of charge transfer reorganization energy on carrier localisation in organic molecular crystals. Physical Chemistry Chemical Physics, 2008, 10, 121-127.                                             | 1.3 | 43        |
| 215 | Multiscale Study of the Mechanism of Catalytic CO <sub>2</sub> Hydrogenation: Role of the Ni(111)<br>Facets. ACS Catalysis, 2020, 10, 8077-8089.                                                               | 5.5 | 43        |
| 216 | Dynamical and nondynamical correlation effects inabinitiochemisorption cluster model calculations.<br>Ground and low lying states of H on Cu(100) and Ag(100). Journal of Chemical Physics, 1988, 88, 260-271. | 1.2 | 42        |

| #   | Article                                                                                                                                                                                                             | IF                | CITATIONS   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 217 | Theoretical Study of Bonding of Carbon Trioxide and Carbonate on Pt(111):Â Relevance to the<br>Interpretation of "in Situ―Vibrational Spectroscopy. Journal of Physical Chemistry B, 1999, 103, 509-518.            | 1.2               | 42          |
| 218 | Development of realistic models for Double Metal Cyanide catalyst active sites. Journal of Molecular<br>Modeling, 2007, 13, 751-756.                                                                                | 0.8               | 42          |
| 219 | Generalized BrÃ,nsted–Evans–Polanyi relationships and descriptors for O–H bond cleavage of<br>organic molecules on transition metal surfaces. Journal of Catalysis, 2014, 313, 24-33.                               | 3.1               | 42          |
| 220 | Hybrid quantum-mechanical and molecular mechanics study of Cu atoms deposition on SiO2 surface defects. Chemical Physics Letters, 1998, 294, 611-618.                                                               | 1.2               | 41          |
| 221 | A theoretical study of coverage effects for ethylene epoxidation on Cu(111) under low oxygen pressure. Journal of Catalysis, 2006, 243, 404-409.                                                                    | 3.1               | 41          |
| 222 | A Combined Density-Functional and IRAS Study on the Interaction of NO with Pd Nanoparticles:<br>Identifying New Adsorption Sites with Novel Properties. Journal of Physical Chemistry C, 2008, 112,<br>16539-16549. | 1.5               | 41          |
| 223 | Density Functional Calculations of Pd Nanoparticles Using a Plane-Wave Method. Journal of Physical<br>Chemistry A, 2008, 112, 8911-8915.                                                                            | 1.1               | 41          |
| 224 | Prediction of half-metallic conductivity in Prussian Blue derivatives. Journal of Materials Chemistry, 2009, 19, 2032.                                                                                              | 6.7               | 41          |
| 225 | Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Physical Review B, 2011, 83, .                                                                                              | 1.1               | 41          |
| 226 | Adsorption of H2S on carbonaceous materials of different dimensionality. International Journal of<br>Hydrogen Energy, 2014, 39, 6610-6619.                                                                          | 3.8               | 41          |
| 227 | Anab initiocluster model study of the magnetic coupling in KNiF3. Journal of Chemical Physics, 1994, 100, 8257-8264.                                                                                                | 1.2               | 40          |
| 228 | Through-bond and through-space effects in the magnetic properties of nitroxide biradicals by an integrated QM/MM approach including solvent effects. Chemical Physics Letters, 1999, 302, 240-248.                  | 1.2               | 40          |
| 229 | Electronic structure and magnetic moments of Co4 and Ni4 clusters supported on the MgO(001) surface. Surface Science, 2001, 473, 213-226.                                                                           | 0.8               | 40          |
| 230 | First-principles study of the adsorption of formaldehyde on the clean and atomic oxygen covered Cu(1) Tj ETQq0                                                                                                      | 0 0 rgBT /<br>4.8 | Overlock 10 |
| 231 | Atomic and Electronic Structure of Cerium Oxide Stepped Model Surfaces. Journal of Physical Chemistry C, 2008, 112, 17643-17651.                                                                                    | 1.5               | 40          |
| 232 | Hydroxyl Identification on ZnO by Infrared Spectroscopies: Theory and Experiments. Journal of<br>Physical Chemistry C, 2014, 118, 1492-1505.                                                                        | 1.5               | 40          |
| 233 | Carbon Capture and Usage by MXenes. ACS Catalysis, 2021, 11, 11248-11255.                                                                                                                                           | 5.5               | 40          |
| 234 | Doublet instability and the molecular structure of AlO2. Journal of Computational Chemistry, 1988, 9,                                                                                                               | 1.5               | 39          |

836-843.

| #   | Article                                                                                                                                                                                                                                                                                                        | IF               | CITATIONS                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 235 | The nature of the chemical bond in simple oxides: A theoretical journey from the ionic model to the ab initio configuration interaction approach. Journal of Chemical Physics, 1993, 99, 389-396.                                                                                                              | 1.2              | 39                       |
| 236 | Theoretical study of CO2 activation on Pt(111) induced by coadsorbed K atoms. Surface Science, 2000, 460, 170-181.                                                                                                                                                                                             | 0.8              | 39                       |
| 237 | Adsorption of CO at Palladium Monolayers Deposited on Pt(111) Electrodes. Combined<br>Spectroelectrochemical and Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 7263-7271.                                                                                                                     | 1.2              | 39                       |
| 238 | Adsorption of Small Palladium Clusters on the Relaxed α-Al2O3(0001) Surface. Journal of Physical Chemistry B, 2003, 107, 6411-6424.                                                                                                                                                                            | 1.2              | 39                       |
| 239 | Putting error bars on theAb Initiotheoretical estimates of the magnetic coupling constants: The parent compounds of superconducting cuprates as a case study. Journal of Computational Chemistry, 2004, 25, 1234-1241.                                                                                         | 1.5              | 39                       |
| 240 | Structural and Spectroelectrochemical Study of Carbonate and Bicarbonate Adsorbed on Pt(111) and Pd/Pt(111) Electrodes. Journal of Physical Chemistry B, 2004, 108, 17928-17939.                                                                                                                               | 1.2              | 39                       |
| 241 | Hydrogenation Reactions on Au/TiC(001): Effects of AuC Interactions on the Dissociation of<br>H <sub>2</sub> . ChemCatChem, 2010, 2, 1219-1222.                                                                                                                                                               | 1.8              | 39                       |
| 242 | Morphology effects in photoactive ZnO nanostructures: photooxidative activity of polar surfaces.<br>Journal of Materials Chemistry A, 2015, 3, 8782-8792.                                                                                                                                                      | 5.2              | 39                       |
| 243 | Matildite versus schapbachite: First-principles investigation of the origin of photoactivity<br>in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:mi>AgBi</mml:mi><mml:msub><mml:<br>mathvariant="normal"&gt;S<mml:mn>2</mml:mn></mml:<br></mml:msub></mml:mrow>.</mml:math<br> | mi.1             | 39                       |
| 244 | Physical Review 9, 2016, 94,<br>Highly active Au/Î'-MoC and Au/Î2-Mo <sub>2</sub> C catalysts for the low-temperature water gas shift<br>reaction: effects of the carbide metal/carbon ratio on the catalyst performance. Catalysis Science and<br>Technology, 2017, 7, 5332-5342.                             | 2.1              | 39                       |
| 245 | First-Principles Calculations on the Adsorption Behavior of Amino Acids on a Titanium Carbide MXene.<br>ACS Applied Bio Materials, 2020, 3, 5913-5921.                                                                                                                                                         | 2.3              | 39                       |
| 246 | Bonding of NO to NiO(100) and NixMg1â^'xO(100) surfaces: A challenge for theory. Journal of Chemical Physics, 2002, 117, 2299-2306.                                                                                                                                                                            | 1.2              | 38                       |
| 247 | Bonding of NH3, CO, and NO to NiO and Ni-doped MgO: a problem for density functional theory.<br>Journal of Physics Condensed Matter, 2004, 16, S2497-S2507.                                                                                                                                                    | 0.7              | 38                       |
| 248 | Absolute Surface Step Energies: Accurate Theoretical Methods Applied to Ceria Nanoislands. Journal of Physical Chemistry Letters, 2012, 3, 1956-1961.                                                                                                                                                          | 2.1              | 38                       |
| 249 | Interaction of First Row Transition Metals with M <sub>2</sub> C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and) Tj ETQq1                                                                                                                                                                                             | 1 0.78431<br>1.5 | 4 <sub>3</sub> gBT /Ovei |
| 250 | Comment on "First-principles determination of the bonding mechanism and adsorption energy for<br>CO/MgO(001)―[Chem. Phys. Lett. 290 (1998) 255]. Chemical Physics Letters, 1999, 306, 202-204.                                                                                                                 | 1.2              | 37                       |
| 251 | Similarities and differences in the Hartree–Fock and density-functional description of the chemisorption bond. Surface Science, 1999, 442, 463-476.                                                                                                                                                            | 0.8              | 37                       |
| 252 | Detailed ab-initio analysis of the magnetic coupling in CuF2. Chemical Physics Letters, 2000, 319, 625-630.                                                                                                                                                                                                    | 1.2              | 37                       |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Charge Density Analysis of Triplet and Broken Symmetry States Relevant to Magnetic Coupling in Systems with Localized Spin Moments. Journal of Physical Chemistry A, 2001, 105, 3570-3577.                         | 1.1 | 37        |
| 254 | Evidence for the Formation of Different Energetically Similar Atomic Structures<br>inAg(111)â^'(7×7)â^'R19.1°â^'CH3S. Physical Review Letters, 2006, 97, 226103.                                                   | 2.9 | 37        |
| 255 | Novel Au–TiC catalysts for CO oxidation and desulfurization processes. Catalysis Today, 2011, 166, 2-9.                                                                                                            | 2.2 | 37        |
| 256 | Discovery of the <i>K</i> <sub>4</sub> Structure Formed by a Triangular π Radical Anion. Journal of the American Chemical Society, 2015, 137, 7612-7615.                                                           | 6.6 | 37        |
| 257 | Consequences of electron correlation for XPS binding energies: Representative case for C(1s) and O(1s) XPS of CO. Journal of Chemical Physics, 2016, 145, 144303.                                                  | 1.2 | 37        |
| 258 | On the hydrogen adsorption and dissociation on Cu surfaces and nanorows. Surface Science, 2016, 646, 221-229.                                                                                                      | 0.8 | 37        |
| 259 | Assessing the usefulness of transition metal carbides for hydrogenation reactions. Chemical Communications, 2019, 55, 12797-12800.                                                                                 | 2.2 | 37        |
| 260 | Importance of the gas-phase error correction for O2 when using DFT to model the oxygen reduction and evolution reactions. Journal of Electroanalytical Chemistry, 2021, 896, 115178.                               | 1.9 | 37        |
| 261 | Ab initioelectronic structure of PtH+, PtH, Pt2, and Pt2H from a oneâ€electron pseudopotential approach. Journal of Chemical Physics, 1996, 104, 8500-8506.                                                        | 1.2 | 36        |
| 262 | Magnetic coupling in the weak ferromagnetCuF2. Physical Review B, 1999, 59, 1016-1023.                                                                                                                             | 1.1 | 36        |
| 263 | Electronic structure of Rh, RhH, and Rh2 as derived from ab initio (configuration interaction) calculations. Journal of Chemical Physics, 1990, 93, 2603-2610.                                                     | 1.2 | 35        |
| 264 | Bonding geometry and bonding character of thiocyanate adsorbed on a Ag(100) surface. Journal of<br>Chemical Physics, 1991, 95, 4678-4684.                                                                          | 1.2 | 35        |
| 265 | A new analysis of image charge theory. Surface Science, 1998, 409, 69-80.                                                                                                                                          | 0.8 | 35        |
| 266 | Ab initiostudy of magnetic interactions inKCuF3andK2CuF4low-dimensional systems. Physical Review B, 1999, 60, 5179-5185.                                                                                           | 1.1 | 35        |
| 267 | Adsorption properties of Ni4 and Ni8 clusters supported on regular and defect sites of the MgO (001) surface. Surface Science, 2002, 499, 73-84.                                                                   | 0.8 | 35        |
| 268 | Ground- and excited-state properties ofM-center oxygen vacancy aggregates in the bulk and surface of<br>MgO. Physical Review B, 2003, 68, .                                                                        | 1.1 | 35        |
| 269 | Optical properties of Cu nanoclusters supported on MgO(100). Journal of Chemical Physics, 2004, 121, 7457-7466.                                                                                                    | 1.2 | 35        |
| 270 | On the prediction of the crystal and electronic structure of mixed-valence materials by periodic<br>density functional calculations: The case of Prussian Blue. Journal of Chemical Physics, 2008, 128,<br>044713. | 1.2 | 35        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Performance of planeâ€waveâ€based LDA+ <i>U</i> and GGA+ <i>U</i> approaches to describe magnetic coupling in molecular systems. Journal of Computational Chemistry, 2009, 30, 2316-2326.          | 1.5 | 35        |
| 272 | Influence of the surface dipole layer and Pauli repulsion on band energies and doping in graphene adsorbed on metal surfaces. Physical Review B, 2012, 86, .                                       | 1.1 | 35        |
| 273 | Single oxygen vacancies of (TiO <sub>2</sub> 35as a prototype reduced nanoparticle:<br>implication for photocatalytic activity. Physical Chemistry Chemical Physics, 2016, 18, 23755-23762.        | 1.3 | 35        |
| 274 | Elucidating the Structure of Ethanol-Producing Active Sites at Oxide-Derived Cu Electrocatalysts.<br>ACS Catalysis, 2020, 10, 10488-10494.                                                         | 5.5 | 35        |
| 275 | Understanding the nature and location of hydroxyl groups on hydrated titania nanoparticles.<br>Nanoscale, 2021, 13, 6577-6585.                                                                     | 2.8 | 35        |
| 276 | Electronic and geometrical structures of Pt3 and Pt4. An ab initio one-electron proposal. Chemical<br>Physics Letters, 1994, 217, 283-287.                                                         | 1.2 | 34        |
| 277 | Topological analysis of the metal-support interaction: the case of Pd atoms on oxide surfaces.<br>Chemical Physics Letters, 2004, 388, 132-138.                                                    | 1.2 | 34        |
| 278 | CO adsorption on monometallic Pd, Rh, Cu and bimetallic PdCu and RhCu monolayers supported on Ru(0001). Surface Science, 2005, 598, 144-155.                                                       | 0.8 | 34        |
| 279 | Electronic structure of single-layered undoped cuprates from hybrid density functional theory.<br>Physical Review B, 2010, 81, .                                                                   | 1.1 | 34        |
| 280 | Electronic-structure-based material descriptors: (in)dependence on self-interaction and Hartree–Fock<br>exchange. Chemical Communications, 2015, 51, 5602-5605.                                    | 2.2 | 34        |
| 281 | Cu as a one-electron atom: Molecular structure and dissociation energy of CuOH. Chemical Physics<br>Letters, 1985, 119, 397-402.                                                                   | 1.2 | 33        |
| 282 | Electronic Effects in the Activation of Supported Metal Clusters:Â Density Functional Theory Study of<br>H2Dissociation on Cu/SiO2. Journal of Physical Chemistry B, 1999, 103, 8552-8557.         | 1.2 | 33        |
| 283 | O <sub>2</sub> Activation by Au <sub>5</sub> Clusters Stabilized on Clean and Electron-Rich MgO<br>Stepped Surfaces. Journal of Physical Chemistry C, 2010, 114, 16973-16978.                      | 1.5 | 33        |
| 284 | Correcting Flaws in the Assignment of Nitrogen Chemical Environments in N-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 11319-11327.                                                 | 1.5 | 33        |
| 285 | Ab initio selfâ€consistent field and configuration interaction study of Cu5O and Ag5O as models for oxygen chemisorption on Cu(100) and Ag(100). Journal of Chemical Physics, 1989, 91, 5466-5475. | 1.2 | 32        |
| 286 | The analysis of the chemisorption bond from uncorrelated and correlated cluster model wave functions. Journal of Chemical Physics, 1994, 100, 1988-1994.                                           | 1.2 | 32        |
| 287 | Proton affinity of S-containing aromatic compounds: Implications for crude oil hydrodesulfurization. Journal of Molecular Catalysis A, 2008, 281, 79-84.                                           | 4.8 | 32        |
| 288 | Stability of Binary SAMs Formed by ω-Acid and Alcohol Functionalized Thiol Mixtures. Langmuir, 2009, 25, 9980-9985.                                                                                | 1.6 | 32        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Origin of the size dependence of Au nanoparticles toward molecular oxygen dissociation. Theoretical Chemistry Accounts, 2011, 128, 675-681.                                                                                                           | 0.5 | 32        |
| 290 | Origin of Optical Excitations in Fluorine-Doped Titania from Response Function Theory: Relevance to Photocatalysis. Journal of Physical Chemistry Letters, 2012, 3, 2269-2274.                                                                        | 2.1 | 32        |
| 291 | Theoretical study of the structure of propene adsorbed on Pt(). Surface Science, 2002, 519, 250-258.                                                                                                                                                  | 0.8 | 31        |
| 292 | Role of dynamical polarization of the ligand-to-metal charge transfer excitations inab initiodetermination of effective exchange parameters. Physical Review B, 2003, 68, .                                                                           | 1.1 | 31        |
| 293 | Role of Kinetics in the Selective Surface Oxidations of Transition Metal Carbides. Journal of Physical Chemistry B, 2006, 110, 15454-15458.                                                                                                           | 1.2 | 31        |
| 294 | Towards size-converged properties of model ceria nanoparticles: Monitoring by adsorbed CO using DFT +U approach. Chemical Physics Letters, 2008, 465, 106-109.                                                                                        | 1.2 | 31        |
| 295 | On the effectiveness of partial oxidation of propylene by gold: A density functional theory study.<br>Journal of Molecular Catalysis A, 2009, 306, 6-10.                                                                                              | 4.8 | 31        |
| 296 | On the dissociation of molecular hydrogen by Au supported on transition metal carbides: choice of the most active support. Physical Chemistry Chemical Physics, 2011, 13, 6865.                                                                       | 1.3 | 31        |
| 297 | New Series of Triply Bridged Dinuclear Cu(II) Compounds: Synthesis, Crystal Structure, Magnetic<br>Properties, and Theoretical Study. Inorganic Chemistry, 2011, 50, 10648-10659.                                                                     | 1.9 | 31        |
| 298 | Subsurface Carbon: A General Feature of Noble Metals. Angewandte Chemie - International Edition, 2019, 58, 1744-1748.                                                                                                                                 | 7.2 | 31        |
| 299 | MXenes atomic layer stacking phase transitions and their chemical activity consequences. Physical Review Materials, 2020, 4, .                                                                                                                        | 0.9 | 31        |
| 300 | Relationships between the activity of some H2-receptor agonists of histamine and their ab initio<br>molecular electrostatic potential (MEP) and electron density comparison coefficients. European<br>Journal of Medicinal Chemistry, 1988, 23, 7-10. | 2.6 | 30        |
| 301 | Cluster model description of the chemisorption bond: effect of the cluster model electronic state.<br>Surface Science, 1994, 304, 335-342.                                                                                                            | 0.8 | 30        |
| 302 | Nature of bonding of alkali metals to Si(111). Physical Review B, 1995, 51, 1581-1592.                                                                                                                                                                | 1.1 | 30        |
| 303 | Interaction of H2 with strained rings at the silica surface from ab initio calculations. Journal of Non-Crystalline Solids, 2000, 271, 56-63.                                                                                                         | 1.5 | 30        |
| 304 | Density Functional Theory Study of Co, Rh, and Ir Atoms Deposited on the α-Al2O3(0001) Surface.<br>Journal of Physical Chemistry B, 2004, 108, 15671-15678.                                                                                           | 1.2 | 30        |
| 305 | Oxygen atoms on the (111) surface of coinage metals: On the chemical state of the adsorbate. Chemical Physics Letters, 2006, 429, 86-90.                                                                                                              | 1.2 | 30        |
| 306 | Stable nanoporous alkali halide polymorphs: a first principles bottom-up study. Journal of Materials Chemistry, 2008, 18, 5871.                                                                                                                       | 6.7 | 30        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Thermodynamic and Kinetic Control on the Formation of Two Novel Metal-Organic Frameworks Based<br>on the Er(III) Ion and the Asymmetric Dimethylsuccinate Ligand. Inorganic Chemistry, 2010, 49, 5063-5071.                                 | 1.9 | 30        |
| 308 | Toward the Design of Ferromagnetic Molecular Complexes: Magnetostructural Correlations in<br>Ferromagnetic Triply Bridged Dinuclear Cu(II) Compounds Containing Carboxylato and Hydroxo<br>Bridges. Inorganic Chemistry, 2010, 49, 285-294. | 1.9 | 30        |
| 309 | Role of step sites on water dissociation on stoichiometric ceria surfaces. Theoretical Chemistry Accounts, 2012, 131, 1.                                                                                                                    | 0.5 | 30        |
| 310 | Comparing the catalytic activity of the water gas shift reaction on Cu(3 2 1) and Cu(1 1 1) surfaces: Step sites do not always enhance the overall reactivity. Journal of Catalysis, 2016, 342, 75-83.                                      | 3.1 | 30        |
| 311 | Kinetic Monte Carlo Simulations Unveil Synergic Effects at Work on Bifunctional Catalysts. ACS<br>Catalysis, 2019, 9, 9117-9126.                                                                                                            | 5.5 | 30        |
| 312 | Methoxy radical reaction to formaldehyde on clean and hydroxy radical-covered copper (111) surfaces: a density functional theory study. Surface Science, 1999, 443, 165-176.                                                                | 0.8 | 29        |
| 313 | Theoretical Study of the Interaction of Molecular Hydrogen with PdCu(111) Bimetallic Surfaces.<br>Journal of Physical Chemistry B, 2001, 105, 1817-1822.                                                                                    | 1.2 | 29        |
| 314 | Controlling the spin of metal atoms adsorbed on oxide surfaces: Ni on regular and defective sites of the MgO(001) surface. Journal of Chemical Physics, 2002, 117, 9445-9451.                                                               | 1.2 | 29        |
| 315 | First-principles study of the optical transitions ofFcenters in the bulk and on the (0001) surface ofαâ^'Al2O3. Physical Review B, 2005, 72, .                                                                                              | 1.1 | 29        |
| 316 | Optical absorption and luminescence energies of F centers in CaO fromab initioembedded cluster calculations. Journal of Chemical Physics, 2006, 125, 074710.                                                                                | 1.2 | 29        |
| 317 | A systematic density functional study of ordered sulfur overlayers on Cu(111) and Ag(111): Influence of the adsorbate coverage. Surface Science, 2008, 602, 906-913.                                                                        | 0.8 | 29        |
| 318 | Designing the Redox-Driven Switching of Ferro- to Antiferromagnetic Couplings in Organic Diradicals. Journal of Chemical Theory and Computation, 2013, 9, 5216-5220.                                                                        | 2.3 | 29        |
| 319 | Relative Stability of F-Covered TiO <sub>2</sub> Anatase (101) and (001) Surfaces from Periodic DFT<br>Calculations and ab Initio Atomistic Thermodynamics. Journal of Physical Chemistry C, 2014, 118,<br>13667-13673.                     | 1.5 | 29        |
| 320 | Supported Molybdenum Carbide Nanoparticles as an Excellent Catalyst for CO <sub>2</sub><br>Hydrogenation. ACS Catalysis, 2021, 11, 9679-9687.                                                                                               | 5.5 | 29        |
| 321 | Chemisorption of group-III metals on the Si(111) and Ge(111) surfaces: Anab initiostudy. Physical Review B, 1990, 42, 5212-5220.                                                                                                            | 1.1 | 28        |
| 322 | The bonding mechanism of NO to Cu(111). Surface Science, 1993, 280, 441-449.                                                                                                                                                                | 0.8 | 28        |
| 323 | Bonding geometry and mechanism of NO adsorbed on Cu2O(111): NO activation by Cu+ cations. Journal of Chemical Physics, 1994, 101, 10134-10139.                                                                                              | 1.2 | 28        |
| 324 | Reliability of the cluster model approach to the Stark tuning rate of adsorbates on metal surfaces:                                                                                                                                         | 1.2 | 28        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Density functional theory with alternative spin densities: Application to magnetic systems with localized spins. Journal of Chemical Physics, 2004, 120, 18-25.                                                                                                   | 1.2 | 28        |
| 326 | Effect of the Support on the Electronic Structure of Au Nanoparticles Supported on Transition Metal<br>Carbides: Choice of the Best Substrate for Au Activation. Journal of Physical Chemistry C, 2009, 113,<br>19994-20001.                                      | 1.5 | 28        |
| 327 | Interaction of SO2 with Cu/TiC(001) and Au/TiC(001): Toward a new family of DeSOx catalysts. Journal of Catalysis, 2011, 279, 352-360.                                                                                                                            | 3.1 | 28        |
| 328 | Tuning the Surface Chemistry of Pd by Atomic C and H: A Microscopic Picture. Chemistry - A European<br>Journal, 2013, 19, 1335-1345.                                                                                                                              | 1.7 | 28        |
| 329 | General concepts, assumptions, drawbacks, and misuses in kinetic <scp>M</scp> onte<br><scp>C</scp> arlo and microkinetic modeling simulations applied to computational heterogeneous<br>catalysis. International Journal of Quantum Chemistry, 2018, 118, e25518. | 1.0 | 28        |
| 330 | A Theoretical Study of Catalytic Coupling of Propyne on Cu{111}. Journal of the American Chemical Society, 2000, 122, 7573-7578.                                                                                                                                  | 6.6 | 27        |
| 331 | On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models. Journal of Chemical Physics, 2005, 122, 224705.                                                                                            | 1.2 | 27        |
| 332 | Theoretical Study of NO Dissociation on Stepped Rh(221) and RhCu(221) Surfaces. Journal of Physical Chemistry C, 2007, 111, 11376-11383.                                                                                                                          | 1.5 | 27        |
| 333 | Desulfurization Reactions on Surfaces of Metal Carbides: Photoemission and Density–Functional Studies. Topics in Catalysis, 2010, 53, 393-402.                                                                                                                    | 1.3 | 27        |
| 334 | A DF-vdW study of the CH4 adsorption on different Ni surfaces. Surface Science, 2014, 625, 64-68.                                                                                                                                                                 | 0.8 | 27        |
| 335 | Synthesis and Characterization of Blue Faceted Anatase Nanoparticles through Extensive Fluorine<br>Lattice Doping. Journal of Physical Chemistry C, 2015, 119, 21243-21250.                                                                                       | 1.5 | 27        |
| 336 | Influence of NO and (NO) <sub>2</sub> adsorption on the properties of Fe-N4 porphyrin-like graphene sheets. Physical Chemistry Chemical Physics, 2017, 19, 3201-3213.                                                                                             | 1.3 | 27        |
| 337 | The Ti2CO2 MXene as a nucleobase 2D sensor: A first-principles study. Applied Surface Science, 2021, 544, 148946.                                                                                                                                                 | 3.1 | 27        |
| 338 | Ab initio cluster model approach to the chemisorption on mercury. Journal of Electroanalytical<br>Chemistry and Interfacial Electrochemistry, 1989, 261, 39-50.                                                                                                   | 0.3 | 26        |
| 339 | All electron versus pseudopotentials in ab initio chemisorption cluster model calculations. Journal of Chemical Physics, 1991, 94, 1236-1240.                                                                                                                     | 1.2 | 26        |
| 340 | Bonding of atomic oxygen to Cu(100) and Ag(100) surfaces: a theoretical comparative study. Surface Science, 1993, 297, 57-65.                                                                                                                                     | 0.8 | 26        |
| 341 | Theoretical Study of the Catalytic Activity of Bimetallic RhCu Surfaces and Nanoparticles toward H2<br>Dissociation. Journal of Physical Chemistry B, 2002, 106, 7839-7845.                                                                                       | 1.2 | 26        |
| 342 | Effect of the surface model on the theoretical description of the chemisorption of atomic hydrogen on Cu(). Surface Science, 2003, 522, 185-197.                                                                                                                  | 0.8 | 26        |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Predicting transition pressures for obtaining nanoporous semiconductor polymorphs: oxides and chalcogenides of Zn, Cd and Mg. Physical Chemistry Chemical Physics, 2010, 12, 8513.                                                       | 1.3  | 26        |
| 344 | Bandgap engineering through nanoporosity. Nanoscale, 2014, 6, 1181-1187.                                                                                                                                                                 | 2.8  | 26        |
| 345 | Line defects and induced doping effects in graphene, hexagonal boron nitride and hybrid BNC. Physical Chemistry Chemical Physics, 2014, 16, 21473-21485.                                                                                 | 1.3  | 26        |
| 346 | Irreversible structural dynamics on the surface of bimetallic PtNi alloy catalyst under alternating oxidizing and reducing environments. Applied Catalysis B: Environmental, 2020, 264, 118476.                                          | 10.8 | 26        |
| 347 | Excited states of MgO: A cluster model study. Journal of Chemical Physics, 1994, 100, 2943-2946.                                                                                                                                         | 1.2  | 25        |
| 348 | Does the electronegativity scale apply to ionic crystals as to molecules? A theoretical study of the bonding character in molecular and crystalline alkaline-earth oxides based on dipole moments. Chemical Physics, 1995, 199, 155-162. | 0.9  | 25        |
| 349 | Theoretical study of the chemisorption of CO on bimetallic RhCu surfaces and nanoparticles. Surface Science, 2003, 531, 39-52.                                                                                                           | 0.8  | 25        |
| 350 | Combining molecular dynamics and ab initio quantum-chemistry to describe electron transfer reactions in electrochemical environments. Journal of Chemical Physics, 2004, 121, 1066-1073.                                                 | 1.2  | 25        |
| 351 | Correlation between Electronic Properties and Hydrodesulfurization Activity of 4d-Transition-Metal Sulfides. Journal of Physical Chemistry B, 2006, 110, 7951-7966.                                                                      | 1.2  | 25        |
| 352 | Vibrational and electron paramagnetic resonance properties of free and MgO supported AuCO complexes. Journal of Chemical Physics, 2006, 124, 174709.                                                                                     | 1.2  | 25        |
| 353 | Theoretical Analysis of the Adsorption of Late Transition-Metal Atoms on the (001) Surface of Early<br>Transition-Metal Carbides. Journal of Physical Chemistry C, 2010, 114, 1622-1626.                                                 | 1.5  | 25        |
| 354 | Theoretical study of the Fluorine doped anatase surfaces. Surface Science, 2013, 618, 154-158.                                                                                                                                           | 0.8  | 25        |
| 355 | Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces. Journal of Chemical Physics, 2015, 143, 114704.                                                                                     | 1.2  | 25        |
| 356 | Bandgap engineering by cationic disorder: case study on AgBiS <sub>2</sub> . Physical Chemistry<br>Chemical Physics, 2017, 19, 27940-27944.                                                                                              | 1.3  | 25        |
| 357 | Generalized gradient approximation adjusted to transition metals properties: Key roles of exchange and local spin density. Journal of Computational Chemistry, 2020, 41, 2598-2603.                                                      | 1.5  | 25        |
| 358 | Nonempirical cluster-model study of the chemisorption of atomic hydrogen on the (111) surface of diamondlike crystals. Physical Review B, 1986, 34, 7203-7208.                                                                           | 1.1  | 24        |
| 359 | Reliability of oneâ€electron approaches in chemisorption cluster model studies: Role of coreâ€polarization and core–valence correlation effects. Journal of Chemical Physics, 1990, 93, 2521-2529.                                       | 1.2  | 24        |
| 360 | Ab initio study of the ground and lowâ€lying states of FeH. Journal of Chemical Physics, 1990, 92, 2478-2480.                                                                                                                            | 1.2  | 24        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Effect of the Madelung potential value and symmetry on the adsorption properties of adsorbate/oxide systems. Surface Science, 1996, 349, 207-215.                                                                                       | 0.8 | 24        |
| 362 | Molecular Dynamics Simulations of the Structure of Pd Clusters Deposited on the MgO(001) Surface.<br>Journal of Physical Chemistry B, 2000, 104, 4342-4348.                                                                             | 1.2 | 24        |
| 363 | Theoretical Study of the Stoichiometric and Reduced Ce-Doped TiO2Anatase (001) Surfaces. Journal of Physical Chemistry C, 2015, 119, 4805-4816.                                                                                         | 1.5 | 24        |
| 364 | Theoretical Modeling of Electronic Excitations of Gas-Phase and Solvated TiO <sub>2</sub><br>Nanoclusters and Nanoparticles of Interest in Photocatalysis. Journal of Chemical Theory and<br>Computation, 2018, 14, 4391-4404.          | 2.3 | 24        |
| 365 | Concepts, models, and methods in computational heterogeneous catalysis illustrated through<br><scp>CO<sub>2</sub></scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular<br>Science, 2021, 11, e1530.               | 6.2 | 24        |
| 366 | Topological analysis of charge density in ionic solids. Chemical Physics Letters, 1993, 215, 97-102.                                                                                                                                    | 1.2 | 23        |
| 367 | Ab initio cluster model study of electric field effects for terminal and bridge bonded CO on Pt(100).<br>Electrochimica Acta, 1999, 45, 639-644.                                                                                        | 2.6 | 23        |
| 368 | First principles simulations ofF centers in cubic SrTiO3. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 153-158.                                                                                             | 0.8 | 23        |
| 369 | First-Principles Periodic Calculation of Four-Body Spin Terms in High-TcCuprate Superconductors.<br>Physical Review Letters, 2006, 97, 087003.                                                                                          | 2.9 | 23        |
| 370 | Persistence of magic cluster stability in ultra-thin semiconductor nanorods. Nanoscale, 2010, 2, 72-77.                                                                                                                                 | 2.8 | 23        |
| 371 | Performance of Minnesota functionals on predicting core-level binding energies of molecules containing main-group elements. Theoretical Chemistry Accounts, 2016, 135, 1.                                                               | 0.5 | 23        |
| 372 | Nature of SrTiO3/TiO2 (anatase) heterostructure from hybrid density functional theory calculations.<br>Journal of Chemical Physics, 2020, 152, 184704.                                                                                  | 1.2 | 23        |
| 373 | Mechanisms of carbon dioxide reduction on strontium titanate perovskites. Journal of Materials<br>Chemistry A, 2020, 8, 9392-9398.                                                                                                      | 5.2 | 23        |
| 374 | MINDO/3 potential energy surface for hydrogen-graphite system: Active sites and migration. Surface Science, 1985, 149, 621-629.                                                                                                         | 0.8 | 22        |
| 375 | The importance of correlation effects on the bonding of atomic oxygen on Pt(111). Journal of Chemical Physics, 1996, 105, 7192-7199.                                                                                                    | 1.2 | 22        |
| 376 | The role of the Pb2+ 6s lone pair in the structure of the double perovskite Pb2ScSbO6. Dalton Transactions, 2009, , 5453.                                                                                                               | 1.6 | 22        |
| 377 | Theoretical Investigation of Stilbene as Photochromic Spin Coupler. Journal of Physical Chemistry A, 2013, 117, 1773-1783.                                                                                                              | 1.1 | 22        |
| 378 | Unexpectedly large impact of van der Waals interactions on the description of heterogeneously catalyzed reactions: the water gas shift reaction on Cu(321) as a case example. Physical Chemistry Chemical Physics, 2016, 18, 2792-2801. | 1.3 | 22        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Biogas Upgrading by Transition Metal Carbides. ACS Applied Energy Materials, 2018, 1, 43-47.                                                                                                                                    | 2.5 | 22        |
| 380 | Properties of Single Oxygen Vacancies on a Realistic (TiO <sub>2</sub> ) <sub>84</sub> Nanoparticle: A<br>Challenge for Density Functionals. Journal of Physical Chemistry C, 2018, 122, 2413-2421.                             | 1.5 | 22        |
| 381 | On the H <sub>2</sub> interactions with transition metal adatoms supported on graphene: a systematic density functional study. Physical Chemistry Chemical Physics, 2018, 20, 3819-3830.                                        | 1.3 | 22        |
| 382 | Assessing the Performance of Cobalt Phthalocyanine Nanoflakes as Molecular Catalysts for<br>Li-Promoted Oxalate Formation in Li–CO <sub>2</sub> –Oxalate Batteries. Journal of Physical<br>Chemistry C, 2018, 122, 25776-25784. | 1.5 | 22        |
| 383 | Combining Theory and Experiment for Multitechnique Characterization of Activated CO <sub>2</sub><br>on Transition Metal Carbide (001) Surfaces. Journal of Physical Chemistry C, 2019, 123, 7567-7576.                          | 1.5 | 22        |
| 384 | Exfoliation Energy as a Descriptor of MXenes Synthesizability and Surface Chemical Activity.<br>Nanomaterials, 2021, 11, 127.                                                                                                   | 1.9 | 22        |
| 385 | Chemisorption of atomic aluminum on Si(111): Evidence for an adsorbate-induced relaxation based onab initiocluster-model calculations. Physical Review B, 1988, 38, 10700-10710.                                                | 1.1 | 21        |
| 386 | Ab Initio Study of the Magnetic Coupling in Na6Fe2S6. Journal of Physical Chemistry A, 1997, 101, 1526-1531.                                                                                                                    | 1.1 | 21        |
| 387 | Density functional cluster model study of bonding and coordination modes of CO2 on Pd(111).<br>Surface Science, 1999, 431, 208-219.                                                                                             | 0.8 | 21        |
| 388 | Mechanisms of Proton Formation from Interaction of H2with Eâ€ <sup>~</sup> and Oxygen Vacancy Centers in SiO2:Â<br>Cluster Model Calculations. Journal of Physical Chemistry B, 2000, 104, 5471-5477.                           | 1.2 | 21        |
| 389 | Theoretical Interpretation of the IR Spectrum of Propyne on Cu(111). Journal of Physical Chemistry B, 2004, 108, 18297-18305.                                                                                                   | 1.2 | 21        |
| 390 | Theoretical Study of CO and NO Chemisorption on RhCu(111) Surfaces. Journal of Physical Chemistry B, 2005, 109, 4654-4661.                                                                                                      | 1.2 | 21        |
| 391 | Energetics and structures of the initial stages of nucleation of (SiO2)Nspecies: possible routes to highly symmetrical tetrahedral clusters. Physical Chemistry Chemical Physics, 2007, 9, 1078-1086.                           | 1.3 | 21        |
| 392 | On the Need for Spin Polarization in Heterogeneously Catalyzed Reactions on Nonmagnetic Metallic Surfaces. Journal of Chemical Theory and Computation, 2012, 8, 1737-1743.                                                      | 2.3 | 21        |
| 393 | Hetero triply-bridged dinuclear copper( <scp>ii</scp> ) compounds with ferromagnetic coupling: a challenge for current density functionals. Physical Chemistry Chemical Physics, 2013, 15, 1966-1975.                           | 1.3 | 21        |
| 394 | Hydrogen storage on metal oxide model clusters using density-functional methods and reliable van der Waals corrections. Physical Chemistry Chemical Physics, 2014, 16, 5382.                                                    | 1.3 | 21        |
| 395 | Conditional Born–Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine.<br>Journal of Physical Chemistry Letters, 2015, 6, 1529-1535.                                                                       | 2.1 | 21        |
| 396 | Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab<br>Initio Thermodynamic and Kinetic Study. ACS Catalysis, 2020, 10, 6213-6222.                                                | 5.5 | 21        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Vibrational frequencies of halogens adsorbed on Ag (100) based on ab initio cluster model<br>calculations. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 200, 47-53.                 | 0.3 | 20        |
| 398 | Shifts in adsorbate vibrational frequencies due to internal electric fields. Chemical Physics Letters, 1994, 224, 576-580.                                                                                            | 1.2 | 20        |
| 399 | Geometry, vibrational frequencies and bonding mechanism of NO adsorbed on Cu(111). Journal of Chemical Physics, 1996, 104, 5647-5656.                                                                                 | 1.2 | 20        |
| 400 | Charge displacement analysis: A new general method to estimate atomic charges in molecules and clusters. Journal of Molecular Catalysis A, 1997, 119, 3-10.                                                           | 4.8 | 20        |
| 401 | Charge decomposition analysis of the chemisorption bond. Chemical Physics Letters, 2000, 320, 222-228.                                                                                                                | 1.2 | 20        |
| 402 | Electric field effects on the ionic-neutral curve crossing of alkali halide molecules. Journal of Chemical Physics, 2000, 113, 9940-9947.                                                                             | 1.2 | 20        |
| 403 | Structure and bonding of propyne on Cu(111) from density functional periodic and cluster models.<br>Journal of Chemical Physics, 2002, 116, 1165-1170.                                                                | 1.2 | 20        |
| 404 | Origin of chemoselective behavior of S-covered Cu(111) towards catalytic hydrogenation of unsaturated aldehydes. Surface Science, 2008, 602, 3284-3290.                                                               | 0.8 | 20        |
| 405 | On the Thermodynamic Stability of (â^š3 × â^š3)R30° Methanethiolate Lattice on Reconstructed Au(111)<br>Surface Models. Journal of Physical Chemistry C, 2008, 112, 19121-19124.                                      | 1.5 | 20        |
| 406 | Density Functional Calculations and IR Reflection Absorption Spectroscopy on the Interaction of<br>SO <sub>2</sub> with Oxide-Supported Pd Nanoparticles. Journal of Physical Chemistry C, 2010, 114,<br>13813-13824. | 1.5 | 20        |
| 407 | Microscopic origin of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>n</mml:mi></mml:math> -type behavior in Si-doped AlN. Physical Review B,<br>2013, 88, .             | 1.1 | 20        |
| 408 | Effect of the Exchange-Correlation Potential on the Transferability of BrÃ,nsted–Evans–Polanyi<br>Relationships in Heterogeneous Catalysis. Journal of Chemical Theory and Computation, 2016, 12,<br>2121-2126.       | 2.3 | 20        |
| 409 | Performance of the <i>G</i> <sub>0</sub> <i>W</i> <sub>0</sub> Method in Predicting the Electronic<br>Gap of TiO <sub>2</sub> Nanoparticles. Journal of Chemical Theory and Computation, 2017, 13, 3746-3753.         | 2.3 | 20        |
| 410 | CeO <sub>2</sub> (111) electronic reducibility tuned by ultra-small supported bimetallic Pt–Cu<br>clusters. Physical Chemistry Chemical Physics, 2019, 21, 15286-15296.                                               | 1.3 | 20        |
| 411 | Ultra-high selectivity biogas upgrading through porous MXenes. Journal of Materials Chemistry A,<br>2020, 8, 12296-12300.                                                                                             | 5.2 | 20        |
| 412 | Convergence of a multireference second-order mbpt method (CIPSI) using a zero-order wavefunction derived from an MS SCF calculation. Chemical Physics Letters, 1986, 126, 98-102.                                     | 1.2 | 19        |
| 413 | Ground and lowâ€lying states of FeH+ as derived from ab initio selfâ€consistent field and configuration interaction calculations. Journal of Chemical Physics, 1989, 90, 6436-6442.                                   | 1.2 | 19        |
| 414 | Ab initiovalence-bond cluster model for ionic solids: Alkaline-earth oxides. Physical Review B, 1993, 47, 6207-6215.                                                                                                  | 1.1 | 19        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | The effect of cation coordination on the properties of oxygen vacancies in FeSbO4. Journal of Materials Chemistry, 2006, 16, 1943.                                                                                                        | 6.7 | 19        |
| 416 | Importance of the embedding environment on the strain within small rings in siliceous materials.<br>Physical Review B, 2006, 73, .                                                                                                        | 1.1 | 19        |
| 417 | Kinetics of the sulfur oxidation on palladium: A combined in situ x-ray photoelectron spectroscopy and density-functional study. Journal of Chemical Physics, 2012, 136, 094702.                                                          | 1.2 | 19        |
| 418 | Cohesion and coordination effects on transition metal surface energies. Surface Science, 2017, 664, 45-49.                                                                                                                                | 0.8 | 19        |
| 419 | Thermodynamics and Kinetics of Molecular Hydrogen Adsorption and Dissociation on MXenes:<br>Relevance to Heterogeneously Catalyzed Hydrogenation Reactions. ACS Catalysis, 2021, 11, 12850-12857.                                         | 5.5 | 19        |
| 420 | Dissociative chemisorption of molecular hydrogen on graphite: A mindo/3 study. Surface Science, 1983, 133, 29-37.                                                                                                                         | 0.8 | 18        |
| 421 | Pressure dependence of magnetic coupling in ionic solids from abinitio cluster model calculations.<br>Journal of Chemical Physics, 1994, 101, 7683-7685.                                                                                  | 1.2 | 18        |
| 422 | Neutral atoms in ionic lattices: Excited states ofKCl:Ag0. Physical Review B, 2000, 62, 13366-13375.                                                                                                                                      | 1.1 | 18        |
| 423 | The fate of optical excitations in small hydrated ZnS clusters: a theoretical study into the effect of hydration on the excitation and localisation of electrons in Zn4S4 and Zn6S6. Physical Chemistry Chemical Physics, 2011, 13, 9311. | 1.3 | 18        |
| 424 | The fate of optical excitations in small polyhedral ZnS clusters: A theoretical study of the excitation and localization of electrons in Zn4S4and Zn6S6. Journal of Chemical Physics, 2011, 134, 064511.                                  | 1.2 | 18        |
| 425 | Adsorption and reaction of SO2 on clean and oxygen precovered Pd(100)—a combined HR-XPS and DF study. Physical Chemistry Chemical Physics, 2011, 13, 16227.                                                                               | 1.3 | 18        |
| 426 | Methane capture at room temperature: adsorption on cubic δ-MoC and orthorhombic<br>β-Mo <sub>2</sub> C molybdenum carbide (001) surfaces. RSC Advances, 2015, 5, 33737-33746.                                                             | 1.7 | 18        |
| 427 | Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron<br>hybrid density functional calculations using numeric atomâ€centered orbitals. Journal of<br>Computational Chemistry, 2017, 38, 523-529. | 1.5 | 18        |
| 428 | Reliable and computationally affordable prediction of the energy gap of<br>(TiO <sub>2</sub> ) <sub>n</sub> (10 ≤i>n≤563) nanoparticles from density functional theory.<br>Physical Chemistry Chemical Physics, 2018, 20, 18907-18911.    | 1.3 | 18        |
| 429 | Boosting the activity of transition metal carbides towards methane activation by nanostructuring.<br>Physical Chemistry Chemical Physics, 2020, 22, 7110-7118.                                                                            | 1.3 | 18        |
| 430 | Effect of oxygen termination on the interaction of first row transition metals with M <sub>2</sub> C<br>MXenes and the feasibility of single-atom catalysts. Journal of Materials Chemistry A, 2022, 10,<br>8846-8855.                    | 5.2 | 18        |
| 431 | Molecular structure, vibrational frequencies and ionization potential of tin dihalides. Chemical Physics Letters, 1986, 123, 528-532.                                                                                                     | 1.2 | 17        |
| 432 | The effect of electron correlation in the interaction of atomic hydrogen with Ben clusters 3â‰¤â‰Ø.<br>Journal of Chemical Physics, 1986, 84, 3311-3316.                                                                                  | 1.2 | 17        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | An analysis of 3d correlation effects in the bonding of atomic oxygen to Cu(100). Journal of Chemical Physics, 1991, 95, 4225-4229.                                                                        | 1.2 | 17        |
| 434 | The nature of the bonding of atomic Al to Si(111): is there a specific site-bond relationship?. Surface Science, 1992, 275, 459-472.                                                                       | 0.8 | 17        |
| 435 | Ab initio cluster model study of geometry and bonding character of atomic nitrogen chemisorbed on the Cu(100) and Ag(100) surfaces. Surface Science, 1997, 374, 31-43.                                     | 0.8 | 17        |
| 436 | Core exciton energies of bulk MgO,Al2O3,andSiO2from explicitly correlatedab initiocluster model calculations. Physical Review B, 2000, 62, 10013-10021.                                                    | 1.1 | 17        |
| 437 | Theoretical study of the adsorption of urea related species on Pt(100) electrodes. Surface Science, 2001, 471, 151-162.                                                                                    | 0.8 | 17        |
| 438 | The interaction of CO2 with sodium-promoted W(011). Physical Chemistry Chemical Physics, 2005, 7, 3866.                                                                                                    | 1.3 | 17        |
| 439 | A general procedure to evaluate many-body spin operator amplitudes from periodic calculations: application to cuprates. New Journal of Physics, 2007, 9, 369-369.                                          | 1.2 | 17        |
| 440 | Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.<br>Journal of Chemical Physics, 2009, 130, 244706.                                                    | 1.2 | 17        |
| 441 | Coverage Dependence of the Structure of Acrolein Adsorbed on Ag(111). Journal of Physical Chemistry Letters, 2010, 1, 2546-2549.                                                                           | 2.1 | 17        |
| 442 | Prospective Role of Multicenter Bonding for Efficient and Selective Hydrogen Transport. Physical<br>Review Letters, 2010, 105, 045901.                                                                     | 2.9 | 17        |
| 443 | Theoretical Study of the Interaction of CO on TiC(001) and Au Nanoparticles Supported on TiC(001):<br>Probing the Nature of the Au/TiC Interface. Journal of Physical Chemistry C, 2011, 115, 22495-22504. | 1.5 | 17        |
| 444 | Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation.<br>Surface Science, 2015, 640, 141-149.                                                                     | 0.8 | 17        |
| 445 | Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages. Journal of Physical Chemistry C, 2018, 122, 28013-28020.                                                                         | 1.5 | 17        |
| 446 | Quantum chemical approach to the chemisorption on mercury. Journal of Electroanalytical<br>Chemistry and Interfacial Electrochemistry, 1982, 142, 31-37.                                                   | 0.3 | 16        |
| 447 | Ab initio molecular structure of Xn,H2n, compounds, (X = Si, Ge, Sn; n = 3, 4). Computational and<br>Theoretical Chemistry, 1984, 110, 131-137.                                                            | 1.5 | 16        |
| 448 | The ionicity of halogens chemisorbed on mercury revisited. Journal of Electroanalytical Chemistry, 1993, 359, 105-113.                                                                                     | 1.9 | 16        |
| 449 | Physical mechanisms responsible for core-level shifts of alkali metals adsorbed on Si(111). Surface Science, 1996, 364, 89-98.                                                                             | 0.8 | 16        |
| 450 | Active sites of Pt surfaces from ab initio cluster model molecular electrostatic potential maps.<br>Electrochimica Acta, 1996, 41, 2275-2283.                                                              | 2.6 | 16        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | Theoretical Study of NH3 Chemisorption on Pt(111). Computational and Theoretical Chemistry, 1998, 458, 93-98.                                                                                          | 1.5 | 16        |
| 452 | 29Si solid state NMR of hydroxyl groups in silica from first principle calculations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 68, 16-21.              | 1.7 | 16        |
| 453 | Cu atoms and clusters on regular and defect sites of the SiO2 surface. Electronic structure and properties from first principle calculations. Faraday Discussions, 1999, 114, 209-222.                 | 1.6 | 16        |
| 454 | A relationship between electronic structure effective parameters and Tc in monolayered cuprate superconductors. Chemical Physics Letters, 2001, 345, 183-188.                                          | 1.2 | 16        |
| 455 | Electronic Structure Properties of Carbazole-like Compounds:Â Implications for Asphaltene Formation.<br>Journal of Physical Chemistry A, 2003, 107, 1597-1603.                                         | 1.1 | 16        |
| 456 | Theoretical Prediction of Benzyne-Like Species in Pyrene Diradicals. Journal of Physical Chemistry A, 2004, 108, 5111-5116.                                                                            | 1.1 | 16        |
| 457 | Theoretical study of the adsorption and dissociation of azobenzene on the rutile TiO2(110) surface.<br>Chemical Physics Letters, 2011, 501, 379-384.                                                   | 1.2 | 16        |
| 458 | Interaction of adenine Cu(II) complexes with BN-doped fullerene differentiates electronically equivalent tautomers. Chemical Physics Letters, 2012, 537, 88-93.                                        | 1.2 | 16        |
| 459 | Computational Pourbaix Diagrams for MXenes: A Key Ingredient toward Proper Theoretical Electrocatalytic Studies. Advanced Theory and Simulations, 2023, 6, .                                           | 1.3 | 16        |
| 460 | MINDO/3 calculations for periodic systems. Chemical Physics Letters, 1984, 108, 593-596.                                                                                                               | 1.2 | 15        |
| 461 | Theoretical evidence for two geometrical isomers of silver oxide (AgO2). Journal of the American<br>Chemical Society, 1986, 108, 7893-7897.                                                            | 6.6 | 15        |
| 462 | Mixed pseudo-potential approach to the on-top chemisorption of atomic hydrogen on the (100) silver surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216, 29-40. | 0.3 | 15        |
| 463 | The orthogonal valence bond interpretation of ab initio chemisorption cluster model wavefunctions.<br>Chemical Physics, 1993, 177, 61-67.                                                              | 0.9 | 15        |
| 464 | Ground and excited states ofKNiF3: Anab initiocluster-model approach. Physical Review B, 1994, 50,<br>3789-3798.                                                                                       | 1.1 | 15        |
| 465 | Role of surface heterogeneity in the chemical bond of MgO: ionic character of regular and defect surface sites. Chemical Physics Letters, 1996, 249, 123-129.                                          | 1.2 | 15        |
| 466 | Novel mechanisms for core level shifts in organic compounds. Journal of Electron Spectroscopy and<br>Related Phenomena, 1997, 83, 151-158.                                                             | 0.8 | 15        |
| 467 | Comparative theoretical study of the structure and bonding of propyne on the Pt(111) and Pd(111) surfaces. Chemical Physics, 2005, 309, 33-39.                                                         | 0.9 | 15        |
| 468 | Modelling organic molecular crystals by hybrid quantum mechanical/molecular mechanical embedding. Chemical Physics Letters, 2008, 457, 154-158.                                                        | 1.2 | 15        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Chemical Bonding and Electronic and Magnetic Structure in LaOFeAs. Journal of the American Chemical Society, 2009, 131, 906-907.                                                                                                   | 6.6 | 15        |
| 470 | Adsorption of Xe atoms on the TiO2(110) surface: A density functional study. Surface Science, 2010, 604, 428-434.                                                                                                                  | 0.8 | 15        |
| 471 | Theoretical study of the structure and reactivity descriptors of CunM (M Ni, Pd, Pt; n = 1–4) bimetallic nanoparticles supported on MgO(001). Surface Science, 2012, 606, 1010-1018.                                               | 0.8 | 15        |
| 472 | The contact of graphene with Ni(111) surface: description by modern dispersive forces approaches.<br>Theoretical Chemistry Accounts, 2016, 135, 1.                                                                                 | 0.5 | 15        |
| 473 | ZrO2 Nanoparticles: a density functional theory study of structure, properties and reactivity.<br>Rendiconti Lincei, 2017, 28, 19-27.                                                                                              | 1.0 | 15        |
| 474 | Matildite Contact with Media: First-Principles Study of AgBiS <sub>2</sub> Surfaces and Nanoparticle<br>Morphology. Journal of Physical Chemistry B, 2018, 122, 521-526.                                                           | 1.2 | 15        |
| 475 | CO <sub>2</sub> interaction with violarite (FeNi <sub>2</sub> S <sub>4</sub> ) surfaces: a dispersion-corrected DFT study. Physical Chemistry Chemical Physics, 2018, 20, 20439-20446.                                             | 1.3 | 15        |
| 476 | Investigating the character of excited states in TiO <sub>2</sub> nanoparticles from topological descriptors: implications for photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 3017-3029.                           | 1.3 | 15        |
| 477 | Assessing the Activity of Ni Clusters Supported on TiC(001) toward CO <sub>2</sub> and H <sub>2</sub> Dissociation. Journal of Physical Chemistry C, 2021, 125, 12019-12027.                                                       | 1.5 | 15        |
| 478 | On the adsorption and formation of Pt dimers on the CeO2(111) surface. Journal of Chemical Physics, 2011, 135, 244708.                                                                                                             | 1.2 | 14        |
| 479 | Identifying atomic sites in N-doped pristine and defective graphene from ab initio core level binding energies. Carbon, 2014, 76, 155-164.                                                                                         | 5.4 | 14        |
| 480 | Spin Adapted versus Broken Symmetry Approaches in the Description of Magnetic Coupling in<br>Heterodinuclear Complexes. Journal of Chemical Theory and Computation, 2015, 11, 1006-1019.                                           | 2.3 | 14        |
| 481 | Magnetic Coupling Constants in Three Electrons Three Centers Problems from Effective Hamiltonian<br>Theory and Validation of Broken Symmetry-Based Approaches. Journal of Chemical Theory and<br>Computation, 2016, 12, 3228-3235. | 2.3 | 14        |
| 482 | Reduction of Hydrogenated ZrO <sub>2</sub> Nanoparticles by Water Desorption. ACS Omega, 2017, 2, 3878-3885.                                                                                                                       | 1.6 | 14        |
| 483 | Substrate-mediated single-atom isolation: dispersion of Ni and La on Î <sup>3</sup> -graphyne. Theoretical Chemistry<br>Accounts, 2017, 136, 1.                                                                                    | 0.5 | 14        |
| 484 | Grazynes: Carbon-Based Two-Dimensional Composites with Anisotropic Properties. Journal of Physical<br>Chemistry C, 2019, 123, 27140-27149.                                                                                         | 1.5 | 14        |
| 485 | Understanding the Structural and Electronic Properties of Photoactive Tungsten Oxide<br>Nanoparticles from Density Functional Theory and <i>GW</i> Approaches. Journal of Chemical Theory<br>and Computation, 2021, 17, 3462-3470. | 2.3 | 14        |
| 486 | Xâ€ray photoelectron spectroscopy of oxygen adsorbates on Al(111): Theory experiment. Journal of<br>Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 1747-1748.                                               | 0.9 | 13        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Basis-Modified hydrogen atoms as embedding atoms inab initio chemisorption cluster model calculations on Si surfaces. Journal of Computational Chemistry, 1993, 14, 1534-1544.                                                           | 1.5 | 13        |
| 488 | Theoretical evidence for the existence of excitons in MgO. Chemical Physics Letters, 1995, 239, 263-266.                                                                                                                                 | 1.2 | 13        |
| 489 | The adsorption of methyl nitrite on the Au(111) surface. Catalysis Letters, 2001, 71, 31-35.                                                                                                                                             | 1.4 | 13        |
| 490 | ON THE N-REPRESENTABILITY AND UNIVERSALITY OF F[i] IN THE HOHENBERG-KOHN-SHAM VERSION OF DENSITY FUNCTIONAL THEORY. International Journal of Modern Physics B, 2008, 22, 4642-4654.                                                      | 1.0 | 13        |
| 491 | Periodic density functional theory study of spin crossover in the cesium iron hexacyanochromate prussian blue analog. Journal of Chemical Physics, 2009, 130, 014702.                                                                    | 1.2 | 13        |
| 492 | Theoretical Simulation of Temperature Programmed Desorption of Molecular Oxygen on Isolated Au<br>Nanoparticles from Density Functional Calculations and Microkinetics Models. Journal of Physical<br>Chemistry C, 2010, 114, 5101-5106. | 1.5 | 13        |
| 493 | Assessing the importance of Van der Waals interactions on the adsorption of azobenzene on the rutile TiO2(110) surface. Chemical Physics Letters, 2012, 545, 60-65.                                                                      | 1.2 | 13        |
| 494 | Theoretical Study of Atomic Fluorine Diffusion through Bulk TiO <sub>2</sub> Polymorphs. Journal of Physical Chemistry C, 2013, 117, 5855-5860.                                                                                          | 1.5 | 13        |
| 495 | New Insights into the Structure of the C-Terminated β-Mo <sub>2</sub> C (001) Surface from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 19224-19231.                                                       | 1.5 | 13        |
| 496 | Handling Magnetic Coupling in Trinuclear Cu(II) Complexes. Journal of Chemical Theory and Computation, 2015, 11, 3650-3660.                                                                                                              | 2.3 | 13        |
| 497 | Effect of Nanostructuring on the Reactivity of Zirconia: A DFT+ <i>U</i> Study of Au Atom Adsorption.<br>Journal of Physical Chemistry C, 2016, 120, 17604-17612.                                                                        | 1.5 | 13        |
| 498 | Carbon dissolution and segregation in platinum. Catalysis Science and Technology, 2017, 7, 807-816.                                                                                                                                      | 2.1 | 13        |
| 499 | Selectivity for CO2 over CH4 on a functionalized periodic mesoporous phenylene-silica explained by transition state theory. Chemical Physics Letters, 2017, 671, 161-164.                                                                | 1.2 | 13        |
| 500 | Electronic effects in the d-d spectrum of NiO. Chemical Physics Letters, 1996, 256, 377-382.                                                                                                                                             | 1.2 | 12        |
| 501 | The importance of 2s bonding contributions for the core level binding energies in organic compounds. Chemical Physics Letters, 1997, 272, 168-172.                                                                                       | 1.2 | 12        |
| 502 | Neutral atoms in ionic lattices: Stability and ground-state properties ofKCl:Ag0. Physical Review B, 2000, 62, 13356-13365.                                                                                                              | 1.1 | 12        |
| 503 | Evidence of magnetic ordering of paramagnetic surface defects on partially hydroxylated MgO nanocrystals. Chemical Physics Letters, 2008, 462, 78-83.                                                                                    | 1.2 | 12        |
| 504 | Spin Hamiltonian effective parameters from periodic electronic structure calculations. Journal of Physics: Conference Series, 2008, 117, 012025.                                                                                         | 0.3 | 12        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 505 | Electronic structure of HgBa2Ca <i>n</i> â~1Cu <i>n</i> O2 <i>n</i> +2 ( <i>n</i> = 1, 2, 3) superconductor<br>parent compounds from periodic hybrid density functional theory. Journal of Chemical Physics, 2011,<br>134, 074709.          | 1.2 | 12        |
| 506 | Comparative density functional theory based study of the reactivity of Cu, Ag, and Au nanoparticles and of (111) surfaces toward CO oxidation and NO2 reduction. Journal of Molecular Modeling, 2014, 20, 2448.                             | 0.8 | 12        |
| 507 | Theoretical and computational investigation of meta-phenylene as ferromagnetic coupler in nitronyl nitroxide diradicals. Theoretical Chemistry Accounts, 2014, 133, 1.                                                                      | 0.5 | 12        |
| 508 | Role of structural symmetry breaking in the structurally induced robust superlubricity of graphene and h-BN homo- and hetero-junctions. Carbon, 2016, 96, 911-918.                                                                          | 5.4 | 12        |
| 509 | ZnO powders as multi-facet single crystals. Physical Chemistry Chemical Physics, 2017, 19, 10622-10628.                                                                                                                                     | 1.3 | 12        |
| 510 | Post-B3LYP Functionals Do Not Improve the Description of Magnetic Coupling in Cu(II) Dinuclear Complexes. Journal of Physical Chemistry A, 2018, 122, 3423-3432.                                                                            | 1.1 | 12        |
| 511 | Robustness of surface activity electronic structure-based descriptors of transition metals. Physical<br>Chemistry Chemical Physics, 2018, 20, 20548-20554.                                                                                  | 1.3 | 12        |
| 512 | Tuning transition metal carbide activity by surface metal alloying: a case study on<br>CO <sub>2</sub> capture and activation. Physical Chemistry Chemical Physics, 2018, 20, 22179-22186.                                                  | 1.3 | 12        |
| 513 | Orbitals Permit the Interpretation of Core-Level Spectroscopies in Terms of Chemistry. Catalysis<br>Letters, 2020, 150, 2457-2463.                                                                                                          | 1.4 | 12        |
| 514 | Chemical ordering in Pt–Au, Pt–Ag and Pt–Cu nanoparticles from density functional calculations<br>using a topological approach. Materials Advances, 2021, 2, 6589-6602.                                                                     | 2.6 | 12        |
| 515 | Tuning the Interfacial Energetics in WO <sub>3</sub> /WO <sub>3</sub> and<br>WO <sub>3</sub> /TiO <sub>2</sub> Heterojunctions by Nanostructure Morphological Engineering.<br>Journal of Physical Chemistry Letters, 2021, 12, 11528-11533. | 2.1 | 12        |
| 516 | Periodic MINDO/3 study of the unreconstructed (111) surface of diamond and of hydrogen chemisorption thereon. Surface Science, 1984, 148, 225-236.                                                                                          | 0.8 | 11        |
| 517 | On the potential energy surface for collinear OH+2 (4Σâ^'). Journal of Chemical Physics, 1991, 94,<br>3774-3777.                                                                                                                            | 1.2 | 11        |
| 518 | Evidence for two different bonding mechanisms of Al on Si(111). Physical Review B, 1993, 47, 2417-2419.                                                                                                                                     | 1.1 | 11        |
| 519 | Valence bond reading of ab initio molecular orbital cluster model wavefunctions: the nature of<br>chemical bond in corundum. Journal of Electron Spectroscopy and Related Phenomena, 1994, 69, 65-71.                                       | 0.8 | 11        |
| 520 | Ab initiotheory of magnetic interactions at surfaces. Journal of Physics Condensed Matter, 2004, 16, S2557-S2574.                                                                                                                           | 0.7 | 11        |
| 521 | Electronic Structure Properties of Dibenzofurane and Dibenzothiophene Derivatives:  Implications on Asphaltene Formation. Energy & Fuels, 2005, 19, 998-1002.                                                                               | 2.5 | 11        |
| 522 | Similarities and differences on the molecular mechanism of CO oxidation on Rh(111) and bimetallic RhCu(111) surfaces. Physical Chemistry Chemical Physics, 2007, 9, 2877-2885.                                                              | 1.3 | 11        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 523 | Monitoring the interaction of adsorbates on metal surfaces by surface site engineering: the case of ethoxy on Cu, Pd, Ag and Au regular and stepped surfaces. Physical Chemistry Chemical Physics, 2010, 12, 6492.        | 1.3 | 11        |
| 524 | Nanoscale thermal stabilization via permutational premelting. Physical Review B, 2012, 85, .                                                                                                                              | 1.1 | 11        |
| 525 | Helical Folding-Induced Stabilization of Ferromagnetic Polyradicals Based on Triarylmethyl Radical<br>Derivatives. Journal of the American Chemical Society, 2016, 138, 5271-5275.                                        | 6.6 | 11        |
| 526 | Adsorption of CO on the rutile TiO <sub>2</sub> (110) surface: a dispersion-corrected density functional theory study. Physical Chemistry Chemical Physics, 2017, 19, 2487-2494.                                          | 1.3 | 11        |
| 527 | Optical Properties and Chemical Ordering of Ag–Pt Nanoalloys: A Computational Study. Journal of<br>Physical Chemistry C, 2019, 123, 25482-25491.                                                                          | 1.5 | 11        |
| 528 | Neutral Organic Radical Formation by Chemisorption on Metal Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 3897-3904.                                                                                         | 2.1 | 11        |
| 529 | Relating X-ray photoelectron spectroscopy data to chemical bonding in MXenes. Nanoscale Advances, 2021, 3, 2793-2801.                                                                                                     | 2.2 | 11        |
| 530 | Adsorption and Activation of CO <sub>2</sub> on Nitride MXenes: Composition, Temperature, and Pressure effects. ChemPhysChem, 2021, 22, 2456-2463.                                                                        | 1.0 | 11        |
| 531 | Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications.<br>Journal of Physical Chemistry Letters, 2020, 11, 8437-8441.                                                          | 2.1 | 11        |
| 532 | On the shifting peak of volcano plots for oxygen reduction and evolution. Electrochimica Acta, 2022, 426, 140799.                                                                                                         | 2.6 | 11        |
| 533 | An ab initio study of the interaction of atomic hydrogen with cluster models simulating the (100) and (110) silver surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 196, 387-395. | 0.3 | 10        |
| 534 | Quantum-mechanical study of the chemisorption of atomic and molecular oxygen on graphite clusters. Computational and Theoretical Chemistry, 1986, 136, 313-322.                                                           | 1.5 | 10        |
| 535 | The cluster model configuration interaction approach to the study of chemisorption on metal and semiconductor surfaces. Computational and Theoretical Chemistry, 1993, 287, 167-178.                                      | 1.5 | 10        |
| 536 | Bonding of Atomic S to Pt(111) from ab Initio Explicitly Correlated Cluster Model Wave Functions.<br>Journal of Physical Chemistry A, 1997, 101, 9732-9737.                                                               | 1.1 | 10        |
| 537 | Effect of the Madelung potential in the structure and bonding of metal-oxide systems: Cu on MgO(100). Journal of Molecular Catalysis A, 1997, 119, 177-183.                                                               | 4.8 | 10        |
| 538 | Templateâ€Assisted Formation of Fullerenes from Shortâ€Chain Hydrocarbons by Supported Platinum<br>Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 4611-4614.                                         | 7.2 | 10        |
| 539 | Surface Activity of Early Transition-Metal Oxycarbides: CO <sub>2</sub> Adsorption Case Study.<br>Journal of Physical Chemistry C, 2019, 123, 3664-3671.                                                                  | 1.5 | 10        |
| 540 | Predicting the Effect of Dopants on CO <sub>2</sub> Adsorption in Transition Metal Carbides: Case<br>Study on TiC (001). Journal of Physical Chemistry C, 2020, 124, 15969-15976.                                         | 1.5 | 10        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 541 | Bulk properties of diamond and silicon by the MINDO/3 crystalline orbital approximation.<br>Computational and Theoretical Chemistry, 1985, 120, 309-314.                                                 | 1.5 | 9         |
| 542 | Differential correlation effects in chemisorption cluster model calculations: an FCI study. Chemical Physics Letters, 1991, 180, 578-582.                                                                | 1.2 | 9         |
| 543 | Theoretical study of the interaction of alkali-metal atoms with CO2. Chemical Physics Letters, 1998, 295, 409-415.                                                                                       | 1.2 | 9         |
| 544 | Accurate and efficient determination of higher roots in diagonalization of large matrices based in function restricted optimization algorithms. Journal of Computational Chemistry, 2000, 21, 1375-1386. | 1.5 | 9         |
| 545 | Unexpected role of Madelung potential in monoplanar high-Tc cuprate superconductors. Chemical<br>Physics Letters, 2003, 379, 291-296.                                                                    | 1.2 | 9         |
| 546 | The treatment of the spin coupling in the bonding of NO to the Ni-doped MgO (100) surface. Molecular Physics, 2003, 101, 241-247.                                                                        | 0.8 | 9         |
| 547 | Magnitude of interplane effective parameters in multilayered high-Tccuprate superconductors.<br>Physical Review B, 2005, 71, .                                                                           | 1.1 | 9         |
| 548 | Merging multiconfigurational wavefunctions and correlation functionals to predict magnetic coupling constants. Journal of Computational Chemistry, 2007, 28, 2559-2568.                                  | 1.5 | 9         |
| 549 | The chemistry of chlorine on Ag(1 1 1) over the sub-monolayer range: A density functional theory investigation. Surface Science, 2008, 602, 2639-2642.                                                   | 0.8 | 9         |
| 550 | Mechanisms of Defect Generation and Clustering in CH3S Self-Assembled Monolayers on Au(111).<br>Journal of Physical Chemistry Letters, 2012, 3, 2159-2163.                                               | 2.1 | 9         |
| 551 | Magic Numbers in a One-Dimensional Nanosystem: ZnS Single-Walled Nanotubes. Journal of Physical<br>Chemistry C, 2013, 117, 22908-22914.                                                                  | 1.5 | 9         |
| 552 | Reactivity of the free and (5,5)-carbon nanotube-supported AuPt bimetallic clusters towards<br>O <sub>2</sub> activation: a theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 3659-3672. | 1.3 | 9         |
| 553 | Assessing the ability of DFT methods to describe static electron correlation effects: CO core level binding energies as a representative case. Journal of Chemical Physics, 2017, 147, 024106.           | 1.2 | 9         |
| 554 | Efficient preparation of TiO2 nanoparticle models using interatomic potentials. Journal of Chemical Physics, 2019, 150, 214305.                                                                          | 1.2 | 9         |
| 555 | Taking into account non-dynamical correlation effects in ab initio chemisorption cluster model calculations. Computational and Theoretical Chemistry, 1989, 202, 315-324.                                | 1.5 | 8         |
| 556 | A numerical test on the size consistency of some multireference configuration interaction approaches. Chemical Physics Letters, 1992, 200, 559-566.                                                      | 1.2 | 8         |
| 557 | The interpretation of X-ray photoelectron spectra of pyrolized S-containing carbonaceous materials.<br>Fuel, 1997, 76, 1347-1352.                                                                        | 3.4 | 8         |
| 558 | Electric field effects in the chemisorption of CO on bimetallic RhCu surface models. Surface Science, 2004, 548, 209-219.                                                                                | 0.8 | 8         |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 559 | Fourier transform infrared spectroscopy and ab initio theory of acid–hydrogen sulfide clusters:<br>H2S–HCl, D2S–DCl and H2S–(HCl)2. Physical Chemistry Chemical Physics, 2007, 9, 2868-2876.                                                 | 1.3 | 8         |
| 560 | Effect of Ag Adatoms on High-Coverage Alkanethiolate Adsorption on Au(111). Journal of Physical Chemistry C, 2008, 112, 4557-4563.                                                                                                           | 1.5 | 8         |
| 561 | Structure and bonding of ethoxy species adsorbed on transition metal surfaces. Theoretical Chemistry Accounts, 2010, 126, 223-229.                                                                                                           | 0.5 | 8         |
| 562 | Theoretical study of electronic and tribological properties of h-BNC <sub>2</sub> /graphene,<br>h-BNC <sub>2</sub> /h-BN and h-BNC <sub>2</sub> /h-BNC <sub>2</sub> bilayers. Physical Chemistry<br>Chemical Physics, 2015, 17, 12908-12918. | 1.3 | 8         |
| 563 | Structural, electronic, and magnetic properties of Ni nanoparticles supported on the TiC(001) surface.<br>Physical Chemistry Chemical Physics, 2020, 22, 26145-26154.                                                                        | 1.3 | 8         |
| 564 | Morphology of TiO <sub>2</sub> Nanoparticles as a Fingerprint for the Transient Absorption Spectra:<br>Implications for Photocatalysis. Journal of Physical Chemistry C, 2020, 124, 11819-11824.                                             | 1.5 | 8         |
| 565 | Towards understanding the role of carbon atoms on transition metal surfaces: Implications for catalysis. Applied Surface Science, 2020, 513, 145765.                                                                                         | 3.1 | 8         |
| 566 | Assigning XPS features in B,N-doped graphene: input from <i>ab initio</i> quantum chemical calculations. Physical Chemistry Chemical Physics, 2021, 23, 1558-1565.                                                                           | 1.3 | 8         |
| 567 | Identifying the Atomic Layer Stacking of Mo <sub>2</sub> C MXene by Probe Molecule Adsorption.<br>Journal of Physical Chemistry C, 2021, 125, 26808-26813.                                                                                   | 1.5 | 8         |
| 568 | The role of d electrons in ab initio chemisorption cluster model calculations. Atomic hydrogen on Cu(100) and Ag(100). Solid State Communications, 1988, 65, 605-608.                                                                        | 0.9 | 7         |
| 569 | Quasi-classical trajectory study of the dynamics of the reaction O(3P)+CS2(X1â^+g)→CS(X1â^+)+SO(X3â^â^')<br>using two model potential energy surfaces. Chemical Physics, 1992, 161, 99-126.                                                  | 0.9 | 7         |
| 570 | Ab initio cluster model comparative study of atomic oxygen and sulfur chemisorption on Pt(111) surface: relevance to heterogeneous catalysis. Catalysis Today, 1999, 50, 613-620.                                                            | 2.2 | 7         |
| 571 | Ab initio study of the optical transitions on low-coordinated sites of an intermediate F center: The Fs+(OH)â^' center on MgO(100) surface. Solid State Ionics, 2007, 178, 173-178.                                                          | 1.3 | 7         |
| 572 | Enhanced magnetic moments of Fe clusters supported on MgO/Fe(001) ultrathin films. Journal of Chemical Physics, 2009, 130, 184711.                                                                                                           | 1.2 | 7         |
| 573 | FEATURES AND CATALYTIC PROPERTIES OF <font>RhCu</font> : A REVIEW. International Journal of Modern Physics B, 2010, 24, 5128-5138.                                                                                                           | 1.0 | 7         |
| 574 | Prediction of optical properties of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>F</mml:mi></mml:math> centers in oxides from quasiparticle excitations.<br>Physical Review B, 2012, 85, .    | 1.1 | 7         |
| 575 | Long range coupling between defect centres in inorganic nanostructures: Valence alternation pairs in nanoscale silica. Journal of Chemical Physics, 2012, 137, 154313.                                                                       | 1.2 | 7         |
| 576 | Low-energy nanoscale clusters of (TiC) n nÂ=Â6, 12: a structural and energetic comparison with MgO.<br>Theoretical Chemistry Accounts, 2013, 132, 1.                                                                                         | 0.5 | 7         |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 577 | Exploring CO dissociation on Fe nanoparticles by density functional theory-based methods: Fe13 as a case study. Theoretical Chemistry Accounts, 2014, 133, 1.                                                                                        | 0.5 | 7         |
| 578 | Triplet–singlet gap in structurally flexible organic diradicals. Theoretical Chemistry Accounts, 2015, 134, 1.                                                                                                                                       | 0.5 | 7         |
| 579 | Electronic Properties of Realistic Anatase TiO <sub>2</sub> Nanoparticles from<br><i>G</i> <sub>0</sub> <i>W</i> <sub>0</sub> Calculations on a Gaussian and Plane Waves Scheme.<br>Journal of Chemical Theory and Computation, 2019, 15, 5024-5030. | 2.3 | 7         |
| 580 | Differential many-body effects for initial and core ionic states: impact on XPS spectra. Theoretical Chemistry Accounts, 2019, 138, 1.                                                                                                               | 0.5 | 7         |
| 581 | Double-well potential energy surface in the interaction between h-BN and Ni(111). Physical Chemistry Chemical Physics, 2019, 21, 10888-10894.                                                                                                        | 1.3 | 7         |
| 582 | On the use of DFT+ <i>U</i> to describe the electronic structure of TiO2 nanoparticles: (TiO2)35 as a case study. Journal of Chemical Physics, 2020, 152, 244107.                                                                                    | 1.2 | 7         |
| 583 | Nanostructuring determines poisoning: tailoring CO adsorption on PtCu bimetallic nanoparticles.<br>Materials Advances, 2022, 3, 4159-4169.                                                                                                           | 2.6 | 7         |
| 584 | Catalytic Reduction of Carbon Dioxide on the (001), (011), and (111) Surfaces of TiC and ZrC: A<br>Computational Study. Journal of Physical Chemistry C, 2022, 126, 5138-5150.                                                                       | 1.5 | 7         |
| 585 | Effect of nanostructuring on the activation of CO <sub>2</sub> on molybdenum carbide nanoparticles. Physical Chemistry Chemical Physics, 0, , .                                                                                                      | 1.3 | 7         |
| 586 | A theoretical study of relaxation and reconstruction of the (111) surface of diamond. Surface Science, 1985, 162, 169-174.                                                                                                                           | 0.8 | 6         |
| 587 | Character of the electronic ground state and of charge-transfer excited states in ionic solids: An ab<br>initio cluster model approach. International Journal of Quantum Chemistry, 1994, 52, 281-293.                                               | 1.0 | 6         |
| 588 | Performance of correlation functionals inab initiochemisorption cluster-model calculations: Alkali metals on Si(111). Physical Review B, 1995, 52, 11998-12005.                                                                                      | 1.1 | 6         |
| 589 | The Adsorption of Nitromethane on the Au (111) Surface. International Journal of Molecular Sciences, 2001, 2, 211-220.                                                                                                                               | 1.8 | 6         |
| 590 | Electric field induced electron transfer at the adsorbate–surface interface. Effect of the type of<br>metal surface. Physical Chemistry Chemical Physics, 2005, 7, 3353.                                                                             | 1.3 | 6         |
| 591 | Exploring the molecular mechanisms of reactions at surfaces. Russian Journal of Physical Chemistry B, 2007, 1, 292-306.                                                                                                                              | 0.2 | 6         |
| 592 | Effect of surface site on the spin state of first-row transition metals adsorbed on MgO: Embedded cluster model and hybrid density functional theory calculations. Physical Review B, 2008, 78, .                                                    | 1.1 | 6         |
| 593 | Azomethane Decomposition Catalyzed by Pt(111):  An Example of Anti-Brönstedâ^'Evansâ^'Polanyi Behavior<br>Journal of Physical Chemistry C, 2008, 112, 1072-1080.                                                                                     | 1.5 | 6         |
| 594 | Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections. Surface Science, 2013, 617, 175-182.                                                        | 0.8 | 6         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                         | IF                 | CITATIONS                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|
| 595 | Vacancy patterning and patterning vacancies: controlled self-assembly of fullerenes on metal surfaces. Nanoscale, 2014, 6, 10850-10858.                                                                                                                                                                                                                                                         | 2.8                | 6                                   |
| 596 | Adsorption properties of trifluoroacetic acid on anatase (101) and (001) surfaces: a density functional theory study. Physical Chemistry Chemical Physics, 2015, 17, 23627-23633.                                                                                                                                                                                                               | 1.3                | 6                                   |
| 597 | Open data settled in materials theory. Nature, 2017, 548, 523-523.                                                                                                                                                                                                                                                                                                                              | 13.7               | 6                                   |
| 598 | Calix[n]arene-based polyradicals: enhancing ferromagnetism by avoiding edge effects. Physical Chemistry Chemical Physics, 2017, 19, 24264-24270.                                                                                                                                                                                                                                                | 1.3                | 6                                   |
| 599 | Subsurface Carbon: A General Feature of Noble Metals. Angewandte Chemie, 2019, 131, 1758-1762.                                                                                                                                                                                                                                                                                                  | 1.6                | 6                                   |
| 600 | Bulk (in)stability as a possible source of surface reconstruction. Physical Chemistry Chemical Physics, 2020, 22, 19249-19253.                                                                                                                                                                                                                                                                  | 1.3                | 6                                   |
| 601 | Gasâ€phase errors affect DFTâ€based electrocatalysis models of oxygen reduction to hydrogen peroxide.<br>ChemElectroChem, 2022, 9, .                                                                                                                                                                                                                                                            | 1.7                | 6                                   |
| 602 | Charting the Atomic C Interaction with Transition Metal Surfaces. ACS Catalysis, 2022, 12, 9256-9269.                                                                                                                                                                                                                                                                                           | 5.5                | 6                                   |
| 603 | On the performance of atomic natural orbital basis sets: A full configuration interaction study.<br>Journal of Chemical Physics, 1990, 93, 4982-4985.                                                                                                                                                                                                                                           | 1.2                | 5                                   |
| 604 | Structure and Bonding in Metalâ ``Oxide Systems:Â The CuMgO and CuCaO Molecular Systems. The<br>Journal of Physical Chemistry, 1996, 100, 16275-16281.                                                                                                                                                                                                                                          | 2.9                | 5                                   |
| 605 | Vibrational frequencies of CO adsorbed on silica supported Mo atoms from density functional calculations. Journal of Molecular Catalysis A, 2001, 170, 175-186.                                                                                                                                                                                                                                 | 4.8                | 5                                   |
| 606 | A Quantum Chemical Model for Electric Field Induced Electron Transfer at Metal Electrodes.<br>Application to Halide Oxidation on Cu(100). Journal of Physical Chemistry B, 2002, 106, 12483-12490.                                                                                                                                                                                              | 1.2                | 5                                   |
| 607 | Theoretical study of nickel porphyrinate derivatives related to catalyst dopant in the oil industry.<br>Journal of Molecular Catalysis A, 2005, 228, 195-202.                                                                                                                                                                                                                                   | 4.8                | 5                                   |
| 608 | Adsorption properties and vibrational spectra of propyne adsorbed on Rh(111). Comparison with other (111) metal surfaces. Physical Chemistry Chemical Physics, 2007, 9, 311-317.                                                                                                                                                                                                                | 1.3                | 5                                   |
| 609 | Stability and Quenching of Plasmon Resonance Absorption in Magnetic Gold Nanoparticles. Journal of Physical Chemistry Letters, 2011, 2, 2996-3001.                                                                                                                                                                                                                                              | 2.1                | 5                                   |
| 610 | A theoretical study of a ZnO graphene analogue: adsorption on Ag(111) and hydrogen transport.<br>Journal of Physics Condensed Matter, 2011, 23, 334215.                                                                                                                                                                                                                                         | 0.7                | 5                                   |
| 611 | Theoretical and experimental study of the interaction of CO on TiC surfaces: Regular versus low<br>Coordinated sites, Surface Science, 2013, 613, 63, 73<br>General model for explicitly hole doped superconductor parent compounds: Electronic structure of                                                                                                                                    | 0.8                | 5                                   |
| 612 | Ca <mmi:math xmins:mmi="http://www.w3.org/1998/Math/MathML&lt;br">display="inline"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mrow><mml:mn>2â^'<mml:mi>x</mml:mi></mml:mn></mml:mrow>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mi>x</mml:mi></mml:mrow<br>/&gt;<mml:mi>x</mml:mi></mml:msub>CuO<mml:math<br>xmlns:mml="http://www.w3.org/1998/M</mml:math<br></mmi:math> | o>< <b>‡m</b> ml:m | at <b>b</b> >Na <mml< td=""></mml<> |

| #   | Article                                                                                                                                                                                                                                                                                                                         | IF             | CITATIONS         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|
| 613 | When reconstruction comes around: Ni, Cu, and Au adatoms on Î <sup>-</sup> MoC(001). Surface Science, 2014, 624, 32-36.                                                                                                                                                                                                         | 0.8            | 5                 |
| 614 | Approaching the Quantitative Description of Enantioselective Adsorption by the Density Functional Theory Means. Journal of Physical Chemistry C, 2019, 123, 11714-11722.                                                                                                                                                        | 1.5            | 5                 |
| 615 | The nano gold rush: Graphynes as atomic sieves for coinage and Pt-group transition metals. Applied Surface Science, 2020, 499, 143927.                                                                                                                                                                                          | 3.1            | 5                 |
| 616 | Limitations of the equivalent core model for understanding core-level spectroscopies. Physical Chemistry Chemical Physics, 2020, 22, 22617-22626.                                                                                                                                                                               | 1.3            | 5                 |
| 617 | Explaining Cu@Pt Bimetallic Nanoparticles Activity Based on NO Adsorption. Chemistry - A European<br>Journal, 2020, 26, 11478-11491.                                                                                                                                                                                            | 1.7            | 5                 |
| 618 | Size and Stoichiometry Effects on the Reactivity of MoC <sub><i>y</i></sub> Nanoparticles toward Ethylene. Journal of Physical Chemistry C, 2021, 125, 6287-6297.                                                                                                                                                               | 1.5            | 5                 |
| 619 | A theoretical study of the nitrogen—graphite system. Computational and Theoretical Chemistry, 1986, 139, 277-282.                                                                                                                                                                                                               | 1.5            | 4                 |
| 620 | Consequences of chemical bonding on the adiabaticity of gas-surface reactions. Computational and Theoretical Chemistry, 1996, 371, 257-267.                                                                                                                                                                                     | 1.5            | 4                 |
| 621 | Growth and properties of Au nanowires. Molecular Simulation, 2009, 35, 1051-1056.                                                                                                                                                                                                                                               | 0.9            | 4                 |
| 622 | Electronic and structural properties of Li <sub><i>n</i></sub> @Be <sub>2</sub> B <sub>8</sub><br>( <i>n</i> = 1–14) and Li <sub><i>n</i></sub> @Be <sub>2</sub> B <sub>36</sub> ( <i>n</i> =â€%<br>shed light on possible anode materials for Liâ€based batteries. Journal of Computational Chemistry,<br>2018, 39, 1795-1805. | ‰1ậ€"21<br>1.5 | ) nanoflakes<br>4 |
| 623 | Understanding W Doping in Wurtzite ZnO. Journal of Physical Chemistry C, 2018, 122, 19082-19089.                                                                                                                                                                                                                                | 1.5            | 4                 |
| 624 | Implicit solvent effects in the determination of BrĄ̃nsted–Evans–Polanyi relationships for<br>heterogeneously catalyzed reactions. Physical Chemistry Chemical Physics, 2019, 21, 17687-17695.                                                                                                                                  | 1.3            | 4                 |
| 625 | Effect of electron correlation in the decomposition of core level binding energy shifts into initial and final state contributions. Physical Chemistry Chemical Physics, 2019, 21, 9399-9406.                                                                                                                                   | 1.3            | 4                 |
| 626 | MINDO/3 study of periodic overlayers on graphite. Surface Science, 1984, 147, 413-426.                                                                                                                                                                                                                                          | 0.8            | 3                 |
| 627 | The nature of metal-oxide chemical bond: Electronic structure of PdMgO and PdOMg molecules.<br>Journal of Chemical Physics, 1997, 107, 7345-7349.                                                                                                                                                                               | 1.2            | 3                 |
| 628 | A study on adatom transport through (â^š3 × â^š3)–R30°–CH <sub>3</sub> S self-assembled monolayers<br>Au(111) using first principles calculations. Physical Chemistry Chemical Physics, 2014, 16, 23067-23073.                                                                                                                  | on<br>1.3      | 3                 |
| 629 | Ionic Liquid Chiral Resolution: Methyl 2-Ammonium Chloride Propanoate on<br>Al(854) <sup><i>S</i></sup> Surface. Journal of Physical Chemistry C, 2014, 118, 1568-1575.                                                                                                                                                         | 1.5            | 3                 |
| 630 | Theoretical Study of Hydrogen Permeation through Mixed NiO–MgO Films Supported on Mo(100): Role<br>of the Oxide–Metal Interface. Journal of Physical Chemistry A, 2014, 118, 5756-5761.                                                                                                                                         | 1.1            | 3                 |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 631 | Approaching multiplet splitting in X-ray photoelectron spectra by density functional theory methods:<br>NO and O2 molecules as examples. Chemical Physics Letters, 2019, 731, 136617.                           | 1.2 | 3         |
| 632 | Insights on alkylidene formation on Mo2C: A potential overlap between direct deoxygenation and olefin metathesis. Journal of Catalysis, 2021, 393, 381-389.                                                     | 3.1 | 3         |
| 633 | Excited States in Metal Oxides by Configuration Interaction and Multireference Perturbation Theory.<br>Progress in Theoretical Chemistry and Physics, 2000, , 227-245.                                          | 0.2 | 3         |
| 634 | Role of C and P Sites on the Chemical Activity of Metal Carbides and Phosphides: From Clusters to Single-Crystal Surfaces. , 2010, , 117-132.                                                                   |     | 3         |
| 635 | Understanding the effect of lattice polarisability on the electrochemical properties of lithium tetrahaloaluminates, LiAl <i>X</i> <sub>4</sub> ( <i>X</i> = Cl, Br, I). Journal of Materials Chemistry A, 0, . | 5.2 | 3         |
| 636 | Chemisorption of atomic hydrogen on rhodium: An ab initio cluster-model approach. Chemical Physics<br>Letters, 1990, 170, 561-564.                                                                              | 1.2 | 2         |
| 637 | Large-scale matrix diagonalization methods by direct optimization of Taylor expansion of<br>Rayleigh–Ritz quotient up to third order. Chemical Physics Letters, 2000, 329, 160-167.                             | 1.2 | 2         |
| 638 | Low-energy nanoscale clusters of (TiC)n n = 6, 12: a structural and energetic comparison with MgO.<br>Highlights in Theoretical Chemistry, 2014, , 213-218.                                                     | 0.0 | 2         |
| 639 | Modeling realistic titania nanoparticles. Frontiers of Nanoscience, 2018, 12, 205-238.                                                                                                                          | 0.3 | 2         |
| 640 | Mo single atoms in the Cu(111) surface as improved catalytic active centers for deoxygenation reactions. Catalysis Science and Technology, 2021, 11, 4969-4978.                                                 | 2.1 | 2         |
| 641 | XPS binding energy shifts as a function of bond distances: a case study of CO. Journal of Physics<br>Condensed Matter, 2022, 34, 154004.                                                                        | 0.7 | 2         |
| 642 | Gasâ€Phase Errors Affect DFTâ€Based Electrocatalysis Models of Oxygen Reduction to Hydrogen Peroxide.<br>ChemElectroChem, 2022, 9, .                                                                            | 1.7 | 2         |
| 643 | Monte carlo study of the vibrational frequency of halogen atoms chemisorbed on Ag(100): Frequency versus coverage relationships. Chemical Physics Letters, 1989, 159, 165-170.                                  | 1.2 | 1         |
| 644 | Non-empirical cluster-model study of the relaxation of (111) surfaces of C, Si, Ge. Computational and<br>Theoretical Chemistry, 1990, 204, 325-329.                                                             | 1.5 | 1         |
| 645 | An ab initio study of the collinear reaction of Fe+ (4F) and Fe+ (6D) with H2. Journal of Chemical Physics, 1991, 94, 4352-4355.                                                                                | 1.2 | 1         |
| 646 | Effect of surface relaxation and rumpling on the vibrational spectrum of NO adsorbed on a Cu2O surface. Journal of Molecular Catalysis A, 1997, 119, 87-93.                                                     | 4.8 | 1         |
| 647 | On the evaluation of selected eigenpairs of large matrices based on function optimization algorithms.<br>Molecular Physics, 2003, 101, 45-51.                                                                   | 0.8 | 1         |
| 648 | Requirements for the generalization of the ab initio two-state model for external electric field induced electron transfer at electrodes. Journal of Electroanalytical Chemistry, 2007, 607, 25-36.             | 1.9 | 1         |

| #   | Article                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 649 | Ab INITIO COMPUTATIONAL MODELS IN MATERIALS SCIENCE: A COMMON PLAYGROUND FOR SURFACE CHEMISTRY AND SOLID-STATE PHYSICS. Chemical Engineering Communications, 2008, 195, 1465-1476.                                                                                                                                                         | 1.5 | 1         |
| 650 | ON THE N-REPRESENTABILITY AND UNIVERSALITY OF $F[\tilde{i}]$ IN THE HOHENBERG-KOHN-SHAM VERSION OF DENSITY FUNCTIONAL THEORY. , 2008, , .                                                                                                                                                                                                  |     | 1         |
| 651 | FEATURES AND CATALYTIC PROPERTIES OF RhCu: A REVIEW. , 2011, , .                                                                                                                                                                                                                                                                           |     | 1         |
| 652 | Surfaces are different: A perspective on structural, energetic and electronic properties of (001)<br>surfaces of alkaline earth metal oxides as calculated with hybrid density functional theory by<br>Andrew J. Logsdail, David Mora-Fonz, David O. Scanlon, C. Richard A. Catlow, Alexey A. Sokol. Surface<br>Science, 2015, 642, 66-67. | 0.8 | 1         |
| 653 | Simulating heterogeneous catalysis on metallic nanoparticles: From under-coordinated sites to extended facets. Frontiers of Nanoscience, 2018, , 101-128.                                                                                                                                                                                  | 0.3 | 1         |
| 654 | Role of step sites on water dissociation on stoichiometric ceria surfaces. Highlights in Theoretical Chemistry, 2014, , 19-25.                                                                                                                                                                                                             | 0.0 | 1         |
| 655 | Comprehensive analysis of the influence of dispersion on group-14 rutile-type solids. Physical Review<br>Materials, 2020, 4, .                                                                                                                                                                                                             | 0.9 | 1         |
| 656 | Can calculated harmonic vibrational spectra rationalize the structure of TiC-based nanoparticles?.<br>Physical Chemistry Chemical Physics, 2022, 24, 778-785.                                                                                                                                                                              | 1.3 | 1         |
| 657 | Reliability of atomic natural orbital basis sets in calculations involving pseudopotentials. Journal of Computational Chemistry, 1992, 13, 148-154.                                                                                                                                                                                        | 1.5 | 0         |
| 658 | Towards anAb InitioDescription of Magnetism in Ionic Solids. Physical Review Letters, 1994, 72, 2669-2669.                                                                                                                                                                                                                                 | 2.9 | 0         |
| 659 | Papers from Euroconference on Molecular Mechanism of Heterogeneous Catalysis Held in San Feliu<br>de Guixols (Spain) in June 2001. International Journal of Molecular Sciences, 2001, 2, 165-166.                                                                                                                                          | 1.8 | 0         |
| 660 | Stability and optical properties of silver atoms in KCI. Radiation Effects and Defects in Solids, 2001, 154, 249-253.                                                                                                                                                                                                                      | 0.4 | 0         |
| 661 | Discrepancy Between Common Local Aromaticity Measures in a Series of Carbazole Derivatives.<br>ChemInform, 2004, 35, no.                                                                                                                                                                                                                   | 0.1 | 0         |
| 662 | Theoretical Aspects of Heterogeneous Catalysis: Applications of Density Functional Methods.<br>ChemInform, 2005, 36, no.                                                                                                                                                                                                                   | 0.1 | 0         |
| 663 | Post Hartree-Fock and Density Functional Theory Formalisms. , 2006, , 185-215.                                                                                                                                                                                                                                                             |     | Ο         |
| 664 | Foundations of AB Initio Theory and Applications to Chemisorption and Bulk Properties using the Cluster Model Approach. , 2000, , 129-154.                                                                                                                                                                                                 |     | 0         |
| 665 | Electronic Structure and Chemisorption Properties of Supported Metal Clusters. , 2003, , .                                                                                                                                                                                                                                                 |     | 0         |