Ljiljana Fruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188555/publications.pdf

Version: 2024-02-01

	201575	223716
2,484	27	46
citations	h-index	g-index
		2225
86	86	3285
docs citations	times ranked	citing authors
	citations 86	2,484 27 citations h-index 86 86

#	Article	IF	Citations
1	Kinetics and Mechanism of In Situ Metallization of Bulk DNA Films. Nanoscale Research Letters, 2022, 17, 18.	3.1	2
2	Size-tuneable and immunocompatible polymer nanocarriers for drug delivery in pancreatic cancer. Nanoscale, 2022, 14, 6656-6669.	2.8	5
3	The future of early cancer detection. Nature Medicine, 2022, 28, 666-677.	15.2	92
4	Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Scientific Reports, 2022, 12, 6580.	1.6	11
5	A guide to assessing cellular senescence <i>inÂvitro</i> and <i>inÂvivo</i> . FEBS Journal, 2021, 288, 56-80.	2.2	251
6	Biopolymerâ€based Carriers for DNA Vaccine Design. Angewandte Chemie - International Edition, 2021, 60, 13225-13243.	7.2	35
7	Biopolymerâ€based Carriers for DNA Vaccine Design. Angewandte Chemie, 2021, 133, 13333-13351.	1.6	5
8	Green, scalable, low cost and reproducible flow synthesis of biocompatible PEG-functionalized iron oxide nanoparticles. Reaction Chemistry and Engineering, 2021, 6, 1961-1973.	1.9	12
9	Polyglycerol-based hydrogels and nanogels: from synthesis to applications. Future Medicinal Chemistry, 2021, 13, 419-438.	1.1	9
10	Biofunctionalised bacterial cellulose scaffold supports the patterning and expansion of human embryonic stem cell-derived dopaminergic progenitor cells. Stem Cell Research and Therapy, 2021, 12, 574.	2.4	3
11	Light-driven assembly of biocompatible fluorescent chitosan hydrogels with self-healing ability. Journal of Materials Chemistry B, 2020, 8, 9804-9811.	2.9	18
12	Heteroâ€Diels–Alder Cycloaddition with RAFT Polymers as Bioconjugation Platform. Angewandte Chemie - International Edition, 2020, 59, 19951-19955.	7.2	13
13	Heteroâ€Dielsâ€Alderâ€Cycloaddition mit RAFTâ€Polymeren als Biokonjugationsplattform. Angewandte Chemie, 2020, 132, 20123-20128.	1.6	0
14	Non-ionic small amphiphile based nanostructures for biomedical applications. RSC Advances, 2020, 10, 42098-42115.	1.7	25
15	Flavin-Conjugated Iron Oxide Nanoparticles as Enzyme-Inspired Photocatalysts for Azo Dye Degradation. Catalysts, 2020, 10, 324.	1.6	10
16	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	3.0	131
17	Iron delivery from liquid-core hydrogels within a therapeutic nipple shield. European Journal of Pharmaceutical Sciences, 2019, 131, 119-126.	1.9	6
18	Enzyme-inspired flavin–polydopamine as a biocompatible nanoparticle photocatalyst. Nanoscale Horizons, 2019, 4, 1318-1325.	4.1	7

#	Article	IF	CITATIONS
19	Flavin Conjugated Polydopamine Nanoparticles Displaying Light-Driven Monooxygenase Activity. Frontiers in Chemistry, 2019, 7, 278.	1.8	11
20	Zinc delivery from non-woven fibres within a therapeutic nipple shield. International Journal of Pharmaceutics, 2018, 537, 290-299.	2.6	4
21	Photoâ€Induced Click Chemistry for DNA Surface Structuring by Direct Laser Writing. Chemistry - A European Journal, 2017, 23, 4990-4994.	1.7	14
22	Fluorescence excitation by enhanced plasmon upconversion under continuous wave illumination. Photonics and Nanostructures - Fundamentals and Applications, 2016, 21, 32-43.	1.0	4
23	Click Crosslinked Chitosan/Gold Nanocomposite Hydrogels. Macromolecular Materials and Engineering, 2016, 301, 1295-1300.	1.7	22
24	Design of broadband SERS substrates by the laser-induced aggregation of gold nanoparticles. Journal of Materials Chemistry C, 2016, 4, 6152-6159.	2.7	13
25	Designing hydrogel nanocomposites using TiO2 as clickable cross-linkers. Journal of Materials Science, 2016, 51, 5073-5081.	1.7	13
26	Photo-induced chemistry for the design of oligonucleotide conjugates and surfaces. Journal of Materials Chemistry B, 2016, 4, 442-449.	2.9	5
27	Optically controlled multiple switching operations of DNA biopolymer devices. Journal of Applied Physics, 2015, 118, .	1.1	10
28	A Selfâ€Reporting Tetrazoleâ€Based Linker for the Biofunctionalization of Gold Nanorods. Chemistry - A European Journal, 2015, 21, 14309-14313.	1.7	21
29	Plasmon resonance tuning using DNA origami actuation. Chemical Communications, 2015, 51, 4789-4792.	2.2	22
30	Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium. Journal of Physical Chemistry B, 2015, 119, 5208-5219.	1.2	15
31	Biocompatible Hydrogel Nanocomposite with Covalently Embedded Silver Nanoparticles. Biomacromolecules, 2015, 16, 1301-1310.	2.6	109
32	Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles. Journal of Nanoscience and Nanotechnology, 2015, 15, 3437-3442.	0.9	26
33	Photo-induced surface encoding of gold nanoparticles. Chemical Communications, 2015, 51, 3363-3366.	2.2	13
34	A DNA-based nano-immunoassay for the label-free detection of glial fibrillary acidic protein in multicell lysates. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 293-300.	1.7	19
35	Ï€â€Conjugated Polymer–Fullerene Covalent Hybrids via Ambient Conditions Diels–Alder Ligation. Small, 2014, 10, 3091-3098.	5.2	16
36	Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-binding Motif. Journal of Biological Chemistry, 2014, 289, 8839-8851.	1.6	46

#	Article	IF	Citations
37	Enhanced Photocatalytic Activity of Au/TiO ₂ Nanocomposite Prepared Using Bifunctional Bridging Linker. Advanced Functional Materials, 2014, 24, 907-915.	7.8	39
38	DNA from natural sources in design of functional devices. Methods, 2014, 67, 105-115.	1.9	6
39	Multifunctional linker for orthogonal decoration of gold nanoparticles with DNA and protein. RSC Advances, 2014, 4, 17980.	1.7	6
40	Light-induced modification of silver nanoparticles with functional polymers. Chemical Communications, 2014, 50, 4430-4433.	2.2	18
41	Nanostructured Porous Si Optical Biosensors: Effect of Thermal Oxidation on Their Performance and Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16049-16055.	4.0	32
42	DNA as Nanostructuring Element for Design of Functional Devices. Advances in Atom and Single Molecule Machines, 2014, , 85-121.	0.0	1
43	Light induced DNA–protein conjugation. Chemical Communications, 2013, 49, 8626.	2.2	13
44	Picking up the Pieces: A Generic Porous Si Biosensor for Probing the Proteolytic Products of Enzymes. Analytical Chemistry, 2013, 85, 1951-1956.	3.2	37
45	The power of light: photosensitive tools for chemical biology. Molecular BioSystems, 2013, 9, 565-570.	2.9	16
46	Functionalization of maleimide-coated silver nanoparticles through Diels–Alder cycloaddition. RSC Advances, 2013, 3, 1709-1713.	1.7	8
47	A facile one-pot route to poly(carboxybetaine acrylamide) functionalized SWCNTs. Chemical Communications, 2013, 49, 6734.	2.2	17
48	Clickable Tyrosine Binding Bifunctional Linkers for Preparation of DNA–Protein Conjugates. Bioconjugate Chemistry, 2013, 24, 1094-1101.	1.8	44
49	Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection. Biosensors and Bioelectronics, 2013, 40, 265-270.	5.3	43
50	Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chemical Communications, 2013, 49, 8770.	2.2	19
51	Reactive oxygen species production by catechol stabilized copper nanoparticles. Nanoscale, 2013, 5, 11610.	2.8	15
52	Nernst-Planck model of photo-triggered, <i>p</i> hâ€"tunable ionic transport through nanopores functionalized with "cagedâ€lysine chains. Journal of Chemical Physics, 2013, 138, 034709.	1.2	21
53	Biosensor based on DNA directed immobilization of enzymes onto optically sensitive porous Si. Materials Research Society Symposia Proceedings, 2013, 1569, 195-200.	0.1	1
54	SNAP-tag as a Tool for Surface Immobilization. Current Pharmaceutical Design, 2013, 19, 5443-5448.	0.9	28

#	Article	IF	CITATIONS
55	Phototriggered Production of Reactive Oxygen Species by TIO ₂ Nanospheres and Rods. Journal of Nanomaterials, 2012, 2012, 1-9.	1.5	16
56	Phototriggered growth of crystalline Au structures in the presence of a DNA–surfactant complex. Nanoscale, 2012, 4, 5585.	2.8	5
57	DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers. Nanoscale Research Letters, 2012, 7, 443.	3.1	25
58	Bifunctional catechol based linkers for modification of TiO ₂ surfaces. Journal of Materials Chemistry, 2012, 22, 735-741.	6.7	34
59	Functional DNA biopolymers and nanocomposite for optoelectronic applications. Optical Materials, 2012, 34, 1208-1213.	1.7	28
60	Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 2012, 22, 390-396.	7.8	65
61	Nanoparticles and Efficiency Enhancement in Plasmonic Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 322-327.	0.1	8
62	Controlled Immobilization of Proteins at the Nanoscale for Highly Sensitive Immuno-Assay. Biophysical Journal, 2011, 100, 161a.	0.2	1
63	Bimetallic Copper-Heme-Protein-DNA Hybrid Catalyst for Diels Alder Reaction. Croatica Chemica Acta, 2011, 84, 269-275.	0.1	4
64	Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Applied Physics Letters, 2011, 99, .	1.5	76
65	Enhanced light emission from blue organic light-emitting devices with DNA biopolymer. , 2011, , .		1
66	Bioconjugation of CdSe/ZnS nanoparticles with SNAP tagged proteins. Chemical Communications, 2011, 47, 10671.	2.2	25
67	Apoenzyme Reconstitution as a Chemical Tool for Structural Enzymology and Biotechnology. Angewandte Chemie - International Edition, 2009, 48, 1550-1574.	7.2	116
68	Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation. Analytical and Bioanalytical Chemistry, 2009, 394, 1797-1801.	1.9	7
69	Addressable DNA–Myoglobin Photocatalysis. Chemistry - an Asian Journal, 2009, 4, 1064-1069.	1.7	19
70	Analysis of heme-reconstitution of apoenzymes by means of surface plasmon resonance. Chemical Communications, 2009, , 230-232.	2.2	35
71	Toward Multiprotein Nanoarrays Using Nanografting and DNA Directed Immobilization of Proteins. Nano Letters, 2009, 9, 2614-2618.	4.5	83
72	Site-specific labeling of DNA–protein conjugates by means of expressed protein ligation. Chemical Communications, 2007, , 353-355.	2.2	13

#	Article	IF	CITATION
73	Lightâ€Induced Triggering of Peroxidase Activity Using Quantum Dots. ChemBioChem, 2007, 8, 2195-2198.	1.3	61
74	DNA-Directed Immobilization of Horseradish Peroxidase–DNA Conjugates on Microelectrode Arrays: Towards Electrochemical Screening of Enzyme Libraries. Chemistry - A European Journal, 2007, 13, 5223-5231.	1.7	70
75	A new approach for DNA detection by SERRS. Faraday Discussions, 2006, 132, 261-268.	1.6	57
76	Kinetic Analysis of Semisynthetic Peroxidase Enzymes Containing a Covalent DNA–Heme Adduct as the Cofactor. Chemistry - A European Journal, 2006, 12, 7448-7457.	1.7	48
77	Covalent Hemin–DNA Adducts for Generating a Novel Class of Artificial Heme Enzymes. Angewandte Chemie - International Edition, 2005, 44, 2603-2606.	7.2	115
78	SERRS dyes: Part 3. Synthesis of reactive benzotriazole azo dyes for surface enhanced resonance Raman scattering. Analyst, The, 2004, 129, 975.	1.7	21
79	The Electronic Effects on the Formation of N-Arylmaleimides and isomaleimides. Heterocycles, 2003, 60, 2305.	0.4	13
80	Detection of DNA probes using Diels Alder cycloaddition and SERRS. Analyst, The, 2003, 128, 692.	1.7	29
81	A new approach to oligonucleotide labelling using Diels–Alder cycloadditions and detection by SERRS. Chemical Communications, 2002, , 2100-2101.	2.2	42
82	Internal labeling of oligonucleotide probes by Diels–Alder cycloaddition. Tetrahedron Letters, 2002, 43, 4785-4788.	0.7	32