Chet C Sherwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic determinants of individual variation in the superior temporal sulcus of chimpanzees (<i>Pan) Tj ETQq1</i>	1 0.78431 1.6	4 rgBT /Overl
2	Redefining varicose projection astrocytes in primates. Glia, 2022, 70, 145-154.	2.5	22
3	Heritability in corpus callosum morphology and its association with tool use skill in chimpanzees (<i>Pan troglodytes</i>): Reproducibility in two genetically isolated populations. Genes, Brain and Behavior, 2022, 21, e12784.	1.1	5
4	Chimpanzee Extraversion scores vary with epigenetic modification of dopamine receptor gene D2 (<i>DRD2</i>) and early rearing conditions. Epigenetics, 2022, , 1-14.	1.3	4
5	Epigenetic ageing of the prefrontal cortex and cerebellum in humans and chimpanzees. Epigenetics, 2022, 17, 1774-1785.	1.3	5
6	Myelin characteristics of the corpus callosum in capuchin monkeys (Sapajus [Cebus] apella) across the lifespan. Scientific Reports, 2022, 12, .	1.6	2
7	Ageâ€related changes in chimpanzee (<i>Pan troglodytes</i>) cognition: Crossâ€sectional and longitudinal analyses. American Journal of Primatology, 2021, 83, e23214.	0.8	13
8	Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees (<scp><i>Pan troglodytes</i></scp>) and humans. Journal of Comparative Neurology, 2021, 529, 1584-1596.	0.9	3
9	A comparison of cell density and serotonergic innervation of the amygdala among four macaque species. Journal of Comparative Neurology, 2021, 529, 1659-1668.	0.9	2
10	Cortical Interlaminar Astrocytes Are Generated Prenatally, Mature Postnatally, and Express Unique Markers in Human and Nonhuman Primates. Cerebral Cortex, 2021, 31, 379-395.	1.6	29
11	The Paracingulate Sulcus Is a Unique Feature of the Medial Frontal Cortex Shared by Great Apes and Humans. Brain, Behavior and Evolution, 2021, 96, 26-36.	0.9	9
12	Age―and cognitionâ€related differences in the gray matter volume of the chimpanzee brain (<i>Pan) Tj ETQqQ Primatology, 2021, 83, e23264.</i>	0 0 rgBT 0.8	Overlock 10/ 17
13	The nucleus accumbens and ventral pallidum exhibit greater dopaminergic innervation in humans compared to other primates. Brain Structure and Function, 2021, 226, 1909-1923.	1.2	6
14	Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLoS Genetics, 2021, 17, e1009506.	1.5	12
15	Predicting their past: Machine language learning can discriminate the brains of chimpanzees with different earlyâ€life social rearing experiences. Developmental Science, 2021, 24, e13114.	1.3	10
16	Comparative neuropathology in aging primates: A perspective. American Journal of Primatology, 2021, 83, e23299.	0.8	11
17	The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a chimpanzee (<scp><i>Pan troglodytes</i></scp>) brain. Journal of Comparative Neurology, 2021, 529, 3429-3452.	0.9	3
18	The distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of a southern lesser galago, a blackâ€capped squirrel monkey, and a crested macaque. Journal of Comparative Neurology, 2021, 529, 3676-3708.	0.9	1

#	Article	IF	CITATIONS
19	Nuclear organization of orexinergic neurons in the hypothalamus of a lar gibbon and a chimpanzee. Anatomical Record, 2021, , .	0.8	2
20	Nuclear organization of serotonergic neurons in the brainstems of a lar gibbon and a chimpanzee. Anatomical Record, 2021, , .	0.8	1
21	Nuclear organization of catecholaminergic neurons in the brains of a lar gibbon and a chimpanzee. Anatomical Record, 2021, , .	0.8	2
22	Gray Matter Variation in the Posterior Superior Temporal Gyrus Is Associated with Polymorphisms in the <i>KIAA0319</i> Gene in Chimpanzees (<i>Pan troglodytes</i>). ENeuro, 2021, 8, ENEURO.0169-21.2021.	0.9	3
23	Distribution of cholinergic neurons in the brains of a lar gibbon and a chimpanzee. Anatomical Record, 2021, , .	0.8	0
24	Comparative neocortical neuromorphology in felids: African lion, African leopard, and cheetah. Journal of Comparative Neurology, 2020, 528, 1392-1422.	0.9	6
25	Sulcal morphology of ventral temporal cortex is shared between humans and other hominoids. Scientific Reports, 2020, 10, 17132.	1.6	29
26	Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28422-28432.	3.3	18
27	Neuron loss associated with age but not Alzheimer's disease pathology in the chimpanzee brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190619.	1.8	17
28	Age-associated epigenetic change in chimpanzees and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190616.	1.8	22
29	Quantification of neurons in the hippocampal formation of chimpanzees: comparison to rhesus monkeys and humans. Brain Structure and Function, 2020, 225, 2521-2531.	1.2	9
30	Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees (Pan troglodytes). Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201320.	1.2	12
31	Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Research, 2020, 30, 776-789.	2.4	97
32	Invariant Synapse Density and Neuronal Connectivity Scaling in Primate Neocortical Evolution. Cerebral Cortex, 2020, 30, 5604-5615.	1.6	36
33	Brain gyrification in wild and domestic canids: Has domestication changed the gyrification index in domestic dogs?. Journal of Comparative Neurology, 2020, 528, 3209-3228.	0.9	12
34	Greater variability in chimpanzee (Pan troglodytes) brain structure among males. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192858.	1.2	10
35	Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. Journal of Neuroscience, 2020, 40, 4622-4643.	1.7	60
36	Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. ELife, 2020, 9, .	2.8	37

#	Article	IF	CITATIONS
37	Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations. ELife, 2020, 9, .	2.8	20
38	Neutrophil to Lymphocyte Ratio (NLR) in captive chimpanzees (Pan troglodytes): The effects of sex, age, and rearing. PLoS ONE, 2020, 15, e0244092.	1.1	3
39	Distinct Patterns of Hippocampal and Neocortical Evolution in Primates. Brain, Behavior and Evolution, 2019, 93, 171-181.	0.9	15
40	White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15253-15261.	3.3	45
41	Evolution of <i>ASPM</i> coding variation in apes and associations with brain structure in chimpanzees. Genes, Brain and Behavior, 2019, 18, e12582.	1.1	4
42	Serotonin Receptor 1A Variation Is Associated with Anxiety and Agonistic Behavior in Chimpanzees. Molecular Biology and Evolution, 2019, 36, 1418-1429.	3.5	16
43	Cover Image, Volume 527, Issue 10. Journal of Comparative Neurology, 2019, 527, C1-C1.	0.9	0
44	Cortical interlaminar astrocytes across the therian mammal radiation. Journal of Comparative Neurology, 2019, 527, 1654-1674.	0.9	35
45	Astrocytic changes with aging and Alzheimer's diseaseâ€ŧype pathology in chimpanzees. Journal of Comparative Neurology, 2019, 527, 1179-1195.	0.9	30
46	The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a lar gibbon (Hylobates lar) brain. Journal of Comparative Neurology, 2019, 527, 1633-1653.	0.9	12
47	Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Structure and Function, 2019, 224, 239-251.	1.2	15
48	Heritability of Gray Matter Structural Covariation and Tool Use Skills in Chimpanzees (Pan) Tj ETQq0 0 0 rgBT /O 29, 3702-3711.	verlock 10 1.6	Tf 50 307 Tc 22
49	Evolutionary divergence of neuroanatomical organization and related genes in chimpanzees and bonobos. Cortex, 2019, 118, 154-164.	1.1	16
50	What single neurons can tell us. ELife, 2019, 8, .	2.8	0
51	Brain Evolution: Mapping the Inner Neandertal. Current Biology, 2019, 29, R95-R97.	1.8	2
52	Individual variability in the structural properties of neurons in the human inferior olive. Brain Structure and Function, 2018, 223, 1667-1681.	1.2	6
53	A neurochemical hypothesis for the origin of hominids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1108-E1116.	3.3	57
54	Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals. Journal of Comparative Neurology, 2018, 526, 496-536.	0.9	33

#	Article	IF	CITATIONS
55	Species Differences in the Organization of the Ventral Cochlear Nucleus. Anatomical Record, 2018, 301, 862-886.	0.8	4
56	Genetic signatures of socio-communicative abilities in primates. Current Opinion in Behavioral Sciences, 2018, 21, 33-38.	2.0	10
5 7	Neuropil Distribution in the Anterior Cingulate and Occipital Cortex of Artiodactyls. Anatomical Record, 2018, 301, 1871-1881.	0.8	2
58	Scaling of the corpus callosum in wild and domestic canids: Insights into the domesticated brain. Journal of Comparative Neurology, 2018, 526, 2341-2359.	0.9	9
59	Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees. Journal of Comparative Neurology, 2018, 526, 2921-2936.	0.9	30
60	A cerebellar substrate for cognition evolved multiple times independently in mammals. ELife, 2018, 7, .	2.8	50
61	Profound seasonal changes in brain size and architecture in the common shrew. Brain Structure and Function, 2018, 223, 2823-2840.	1.2	33
62	Cholinergic innervation of the basal ganglia in humans and other anthropoid primates. Journal of Comparative Neurology, 2017, 525, 319-332.	0.9	15
63	Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans. Current Biology, 2017, 27, 714-720.	1.8	128
64	Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures. Molecular and Cellular Neurosciences, 2017, 82, 137-142.	1.0	7
65	Human brain evolution. Current Opinion in Behavioral Sciences, 2017, 16, 41-45.	2.0	34
66	Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys. Brain Structure and Function, 2017, 222, 3241-3254.	1.2	16
67	Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals. Journal of Comparative Neurology, 2017, 525, 1811-1826.	0.9	15
68	Gradients of Connectivity in the Cerebral Cortex. Trends in Cognitive Sciences, 2017, 21, 61-63.	4.0	9
69	Brain Plasticity and Human Evolution. Annual Review of Anthropology, 2017, 46, 399-419.	0.4	107
70	Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171169.	1.2	18
71	Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiology of Aging, 2017, 59, 107-120.	1.5	93
72	FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Scientific Reports, 2017, 7, 16866.	1.6	27

#	Article	IF	CITATIONS
73	Molecular and cellular reorganization of neural circuits in the human lineage. Science, 2017, 358, 1027-1032.	6.0	192
74	Changes in Lipidome Composition during Brain Development in Humans, Chimpanzees, and Macaque Monkeys. Molecular Biology and Evolution, 2017, 34, 1155-1166.	3.5	28
75	Combining diffusion magnetic resonance tractography with stereology highlights increased crossâ€cortical integration in primates. Journal of Comparative Neurology, 2017, 525, 1075-1093.	0.9	36
76	Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism. PLoS Biology, 2016, 14, e1002558.	2.6	73
77	Neocortical neuronal morphology in the Siberian Tiger (<i>Panthera tigris altaica</i>) and the clouded leopard (<i>Neofelis nebulosa</i>). Journal of Comparative Neurology, 2016, 524, 3641-3665.	0.9	6
78	Highâ€ŧhroughput RNA sequencing reveals structural differences of orthologous brainâ€expressed genes between western lowland gorillas and humans. Journal of Comparative Neurology, 2016, 524, 288-308.	0.9	2
79	The heritability of chimpanzee and human brain asymmetry. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161319.	1.2	34
80	Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Social Cognitive and Affective Neuroscience, 2016, 11, 413-422.	1.5	47
81	Neocortical grey matter distribution underlying voluntary, flexible vocalizations in chimpanzees. Scientific Reports, 2016, 6, 34733.	1.6	17
82	Humanâ€specific increase of dopaminergic innervation in a striatal region associated with speech and language: A comparative analysis of the primate basal ganglia. Journal of Comparative Neurology, 2016, 524, 2117-2129.	0.9	32
83	Neocortical neuronal morphology in the newborn giraffe (<i>Giraffa camelopardalis) Tj ETQq1 1 0.784314 rgBT / Neurology, 2016, 524, 257-287.</i>	Overlock 0.9	10 Tf 50 347 9
84	Early Alzheimer's disease–type pathology in the frontal cortex ofÂwild mountain gorillas (Gorilla) Tj ETQq0 0 C) rgBT /Ov	erlgçk 10 Tf 5
85	Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E469-78.	3.3	190
86	A neuronal aging pattern unique to humans and common chimpanzees. Brain Structure and Function, 2016, 221, 647-664.	1.2	18
87	The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151535.	1.2	42
88	Comparative analysis of Meissner's corpuscles in the fingertips of primates. Journal of Anatomy, 2015, 227, 72-80.	0.9	32
89	Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14799-14804.	3.3	151
90	Organization and Evolution of Brain Lipidome Revealed by Large-Scale Analysis of Human, Chimpanzee, Macaque, and Mouse Tissues. Neuron, 2015, 85, 695-702.	3.8	123

#	Article	IF	CITATIONS
91	Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees. Genome Biology and Evolution, 2015, 7, 2276-2288.	1.1	41
92	High spatial resolution proteomic comparison of the brain in humans and chimpanzees. Journal of Comparative Neurology, 2015, 523, 2043-2061.	0.9	18
93	Analysis of Synaptic Gene Expression in the Neocortex of Primates Reveals Evolutionary Changes in Glutamatergic Neurotransmission. Cerebral Cortex, 2015, 25, 1596-1607.	1.6	33
94	The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Structure and Function, 2015, 220, 2851-2872.	1.2	24
95	The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Brain Structure and Function, 2015, 220, 3339-3368.	1.2	31
96	Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. Frontiers in Neuroanatomy, 2014, 8, 24.	0.9	42
97	Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates. Frontiers in Human Neuroscience, 2014, 8, 101.	1.0	6
98	The Cerebral Cortex of the Pygmy Hippopotamus, <i>Hexaprotodon liberiensis</i> (Cetartiodactyla,) Tj ETQq0 0 (0 rgBT /Ov 0.8	verlock 10 Tf 40
99	Evolution of the Central Sulcus Morphology in Primates. Brain, Behavior and Evolution, 2014, 84, 19-30.	0.9	47
100	Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness. PLoS Biology, 2014, 12, e1001871.	2.6	80
101	Perspectives on Human Brain Evolution. Brain, Behavior and Evolution, 2014, 84, 79-80.	0.9	0
102	Reply to Skoyles: Decline in growth rate, not muscle mass, predicts the human childhood peak in brain metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4910.	3.3	1
103	Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13010-13015.	3.3	409
104	Age-related effects in the neocortical organization of chimpanzees: Gray and white matter volume, cortical thickness, and gyrification. NeuroImage, 2014, 101, 59-67.	2.1	39
105	Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nature Communications, 2014, 5, 4469.	5.8	79
106	Comparative organization of the claustrum: what does structure tell us about function?. Frontiers in Systems Neuroscience, 2014, 8, 117.	1.2	52
107	What's the fuss over human frontal lobe evolution?. Trends in Cognitive Sciences, 2013, 17, 432-433.	4.0	48
108	Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130575.	1.2	79

#	Article	IF	CITATIONS
109	Dendritic Morphology of Pyramidal Neurons in the Chimpanzee Neocortex: Regional Specializations and Comparison to Humans. Cerebral Cortex, 2013, 23, 2429-2436.	1.6	114
110	Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (<i>Gorilla gorilla gorilla</i>). Journal of Comparative Neurology, 2013, 521, 4318-4338.	0.9	74
111	Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10395-10401.	3.3	112
112	Now that WeÂ've Got the Map, Where Are We Going Moving from Gene Candidate Lists to Function in Studies of Brain Evolution. Brain, Behavior and Evolution, 2012, 80, 167-169.	0.9	8
113	Human brain evolution writ large and small. Progress in Brain Research, 2012, 195, 237-254.	0.9	89
114	Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16480-16485.	3.3	492
115	Neuronal morphology in the African elephant (Loxodonta africana) neocortex. Brain Structure and Function, 2011, 215, 273-298.	1.2	54
116	Aging of the cerebral cortex differs between humans and chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13029-13034.	3.3	96
117	Comparative anatomy of the locus coeruleus in humans and nonhuman primates. Journal of Comparative Neurology, 2010, 518, 963-971.	0.9	49
118	Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (<i>Pan) Tj ETQq0 0 0 rgBT /</i>	Overlock 1.2	10 Jf 50 382 ⁻
119	Broca's Area Homologue in Chimpanzees (Pan troglodytes): Probabilistic Mapping, Asymmetry, and Comparison to Humans. Cerebral Cortex, 2010, 20, 730-742.	1.6	169
120	Wernicke's area homologue in chimpanzees (<i>Pan troglodytes</i>) and its relation to the appearance of modern human language. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2165-2174.	1.2	87
121	Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1011-1020.	1.2	42
122	Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Structure and Function, 2009, 213, 301-328.	1.2	41
123	Cholinergic innervation of the frontal cortex: Differences among humans, chimpanzees, and macaque monkeys. Journal of Comparative Neurology, 2008, 506, 409-424.	0.9	59
124	A natural history of the human mind: tracing evolutionary changes in brain and cognition. Journal of Anatomy, 2008, 212, 426-454.	0.9	313
125	Gray matter asymmetries in chimpanzees as revealed by voxel-based morphometry. NeuroImage, 2008, 42, 491-497.	2.1	61
126	Scaling of Inhibitory Interneurons in Areas V1 and V2 of Anthropoid Primates as Revealed by Calcium-Binding Protein Immunohistochemistry. Brain, Behavior and Evolution, 2007, 69, 176-195.	0.9	67

#	Article	IF	CITATIONS
127	Histological asymmetries of primary motor cortex predict handedness in chimpanzees (Pan) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 40
128	Evolution of increased glia-neuron ratios in the human frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13606-13611.	3.3	303
129	Neuroanatomical Basis of Facial Expression in Monkeys, Apes, and Humans. Annals of the New York Academy of Sciences, 2006, 1000, 99-103.	1.8	27
130	Primary motor cortex asymmetry is correlated with handedness in capuchin monkeys (cebus apella) Behavioral Neuroscience, 2005, 119, 1701-1704.	0.6	79
131	Is humanlike cytoarchitectural asymmetry present in another species with complex social vocalization? A stereologic analysis of mustached bat auditory cortex. Brain Research, 2005, 1045, 164-174.	1.1	25
132	Evolution of the brainstem orofacial motor system in primates: a comparative study of trigeminal, facial, and hypoglossal nuclei. Journal of Human Evolution, 2005, 48, 45-84.	1.3	132
133	Comparative anatomy of the facial motor nucleus in mammals, with an analysis of neuron numbers in primates. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 287A, 1067-1079.	2.0	74
134	Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans. Brain, Behavior and Evolution, 2004, 63, 61-81.	0.9	49
135	Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans. Brain, Behavior and Evolution, 2004, 63, 82-106.	0.9	61
136	Brain structure variation in great apes, with attention to the mountain gorilla (Gorilla beringei) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 38
137	Stereologic characterization and spatial distribution patterns of Betz cells in the human primary motor cortex. The Anatomical Record, 2003, 270A, 137-151.	2.3	100

138	Variability of Broca's area homologue in African great apes: Implications for language evolution. The Anatomical Record, 2003, 271A, 276-285.	2.3	124
139	Evolution of Specialized Pyramidal Neurons in Primate Visual and Motor Cortex. Brain, Behavior and Evolution, 2003, 61, 28-44.	0.9	63
140	Cytoarchitecture, myeloarchitecture, and parcellation of the chimpanzee inferior parietal lobe. Brain	1.2	2

140 Structure and Function, 0, , .

9