Sergii I Shylin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525, 73-76.	27.8	1,835
2	Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology, 2015, 06, 365.	3.5	72
3	Spin Crossover in Fe(II)–M(II) Cyanoheterobimetallic Frameworks (M = Ni, Pd, Pt) with 2-Substituted Pyrazines. Inorganic Chemistry, 2016, 55, 4906-4914.	4.0	58
4	Pd@Fe ₂ O ₃ Superparticles with Enhanced Peroxidase Activity by Solution Phase Epitaxial Growth. Chemistry of Materials, 2017, 29, 1134-1146.	6.7	58
5	Cooperative Highâ€Temperature Spin Crossover Accompanied by a Highly Anisotropic Structural Distortion. European Journal of Inorganic Chemistry, 2016, 2016, 3191-3195.	2.0	49
6	Indefinitely stable iron(IV) cage complexes formed in water by air oxidation. Nature Communications, 2017, 8, 14099.	12.8	48
7	Chiral spin crossover nanoparticles and gels with switchable circular dichroism. Journal of Materials Chemistry C, 2015, 3, 4737-4741.	5.5	41
8	Efficient visible light-driven water oxidation catalysed by an iron(<scp>iv</scp>) clathrochelate complex. Chemical Communications, 2019, 55, 3335-3338.	4.1	33
9	High-Temperature Superconductivity in Hydrides: Experimental Evidence and Details. Journal of Superconductivity and Novel Magnetism, 2022, 35, 965-977.	1.8	32
10	Synthesis of Nanocrystals and Particle Size Effects Studies on the Thermally Induced Spin Transition of the Model Spin Crossover Compound [Fe(phen) ₂ (NCS) ₂]. Inorganic Chemistry, 2015, 54, 7906-7914.	4.0	26
11	High temperature spin crossover in [Fe(pyrazine){Ag(CN) ₂ } ₂] and its solvate. New Journal of Chemistry, 2016, 40, 9012-9016.	2.8	25
12	Solvent-dependent SCO Behavior of Dinuclear Iron(II) Complexes with a 1,3,4-Thiadiazole Bridging Ligand. Inorganic Chemistry, 2016, 55, 6414-6419.	4.0	25
13	Enantioselective Guest Effect on the Spin State of a Chiral Coordination Framework. Chemistry - A European Journal, 2015, 21, 18076-18079.	3.3	23
14	The surface chemistry of iron oxide nanocrystals: surface reduction of γ-Fe ₂ O ₃ to Fe ₃ O ₄ by redox-active catechol surface ligands. Journal of Materials Chemistry C, 2018, 6, 326-333.	5.5	19
15	Long‣asting Nonâ€hydrogenated Dark Titanium Dioxide: Medium Vacuum Anneal for Enhanced Visible Activity of Modified Multiphase Photocatalysts. ChemCatChem, 2018, 10, 2949-2954.	3.7	17
16	Photoinduced hole transfer from tris(bipyridine)ruthenium dye to a high-valent iron-based water oxidation catalyst. Faraday Discussions, 2019, 215, 162-174.	3.2	15
17	Pyridazineâ€&upported Polymeric Cyanometallates with Spin Transitions. European Journal of Inorganic Chemistry, 2019, 2019, 4532-4537.	2.0	14
18	Copper-containing hybrid compounds based on extremely rare [V ₂ Mo ₆ O ₂₆] ^{6–} POM as water oxidation catalysts. Inorganic Chemistry Frontiers, 2019, 6, 1813-1823.	6.0	13

SERGII I SHYLIN

#	Article	IF	CITATIONS
19	Two-Step Spin Crossover in Hofmann-Type Coordination Polymers [Fe(2-phenylpyrazine) ₂ {M(CN) ₂ } ₂] (M = Ag, Au). Inorganic Chemistry, 2022, 61, 2093-2104.	4.0	13
20	Hofmann-Like Frameworks Fe(2-methylpyrazine) _{<i>n</i>} [M(CN) ₂] ₂ (M = Au, Ag): Spin-Crossover Defined by the Precious Metal. Inorganic Chemistry, 2020, 59, 6541-6549.	4.0	12
21	Water-soluble and redox-responsive hyperbranched polyether copolymers based on ferrocenyl glycidyl ether. Polymer Chemistry, 2015, 6, 7112-7118.	3.9	11
22	Spin crossover in iron(<scp>ii</scp>) Hofmann clathrates analogues with 1,2,3-triazole. Dalton Transactions, 2021, 50, 9250-9258.	3.3	11
23	Intercalation effect on hyperfine parameters of Fe in FeSe superconductor with T _c = 42 K. Europhysics Letters, 2015, 109, 67004.	2.0	10
24	Iron (II) isothiocyanate complexes with substituted pyrazines: Experimental and theoretical views on their electronic structure. Polyhedron, 2015, 87, 147-155.	2.2	10
25	Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth. Chemistry of Materials, 2018, 30, 4277-4288.	6.7	10
26	Expanding manganese(<scp>iv</scp>) aqueous chemistry: unusually stable water-soluble hexahydrazide clathrochelate complexes. Chemical Communications, 2021, 57, 11060-11063.	4.1	9
27	Phase Separation in RbxFe2â^'ySe2 Probed by Non-stoichiometry and Cu Doping. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1315-1319.	1.8	8
28	Spinâ€Stateâ€Dependent Redox atalytic Activity of a Switchable Iron(II) Complex. European Journal of Inorganic Chemistry, 2017, 2017, 3125-3131.	2.0	8
29	Pressure effect on superconductivity in FeSe _{0.5} Te _{0.5} . Physica Status Solidi (B): Basic Research, 2017, 254, 1600161.	1.5	7
30	Interplay Between Superconductivity and Magnetism in Cu-Doped FeSe Under Pressure. Journal of Superconductivity and Novel Magnetism, 2018, 31, 763-769.	1.8	6
31	Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate. Journal of Physical Chemistry C, 2021, 125, 2636-2647.	3.1	6
32	Pressure-induced magnetic collapse and metallization of TlFe1.6Se2. Physical Review B, 2017, 96, .	3.2	5
33	From Single Molecules to Nanostructured Functional Materials: Formation of a Magnetic Foam Catalyzed by Pd@Fe _{<i>x</i>} O Heterodimers. ACS Applied Nano Materials, 2018, 1, 1050-1057.	5.0	5
34	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
35	Water Oxidation by Pentapyridyl Base Metal Complexes? A Case Study. Inorganic Chemistry, 2022, 61, 9104-9118.	4.0	5
36	Correlation Between T c and Hyperfine Parameters of Fe in Layered Chalcogenide Superconductors. Journal of Superconductivity and Novel Magnetism, 2016, 29, 573-576.	1.8	4

SERGII I SHYLIN

#	Article	IF	CITATIONS
37	Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III)–pyrazine-2-carbonitrile–pyridine (1/4/1). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m280-m280.	0.2	4
38	Spin transition in a ferrous chloride complex supported by a pentapyridine ligand. Chemical Communications, 2020, 56, 2703-2706.	4.1	3
39	Electronic and geometric structure effects on one-electron oxidation of first-row transition metals in the same ligand framework. Dalton Transactions, 2021, 50, 660-674.	3.3	3
40	Fourâ€Step Spin Crossover in a New Cyanoâ€Bridged Ironâ€Silver Coordination Polymer. Chemistry - A European Journal, 2022, 28, .	3.3	3
41	Co–Co and Co–Fe cyano-bridged pentanuclear clusters based on a methylpyrazinyl-diamine tetradentate ligand: spin crossover and metal substitution effects. CrystEngComm, 2017, 19, 7079-7082.	2.6	2
42	Pressure-Induced Semiconductor-Semimetal Transition in Rb0.8Fe1.6S2. JETP Letters, 2019, 109, 536-540.	1.4	2
43	Facile one-pot synthesis of hybrid compounds based on decavanadate showing water oxidation activity. Inorganic Chemistry Communication, 2020, 119, 108111.	3.9	2
44	Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m298-m299.	0.2	1
45	Crystal structure of high-spin tetraaquabis(2-chloropyrazine-κN4)iron(II) bis(4-methylbenzenesulfonate). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 776-778.	0.5	0
46	Crystal structure of the co-crystalfac-triaquatris(thiocyanato-κN)iron(III)–2,3-dimethylpyrazine (1/3). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 374-376.	0.5	0
47	Mössbauer spectroscopy and X-ray fluorescence studies on sediments from the methanic zone of the Helgoland mud area, North Sea. Hyperfine Interactions, 2016, 237, 1.	0.5	0
48	Beyond artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 422-438.	3.2	0
49	Biological approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 66-83.	3.2	0
50	Hybrid compound based on diethylenetriaminecopper(<scp>ii</scp>) cations and scarce V-monosubstituted β-octamolybdate as water oxidation catalyst. RSC Advances, 2021, 11, 32119-32125.	3.6	0
51	1D iron(<scp>ii</scp>)-1,2,4-triazolic chains with spin crossover assembled from discrete trinuclear complexes. Dalton Transactions, 2022, 51, 2364-2369.	3.3	0