
Veronique Imbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Carcinogen Cadmium Activates Lysine 63 (K63)-Linked Ubiquitin-Dependent Signaling and Inhibits Selective Autophagy. Cancers, 2021, 13, 2490.	3.7	7
2	New Drug Repositioning Candidates for T-ALL Identified Via Human/Murine Gene Signature Comparison. Frontiers in Oncology, 2020, 10, 557643.	2.8	4
3	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	16.8	34
4	Resistance to lysosomotropic drugs used to treat kidney and breast cancers involves autophagy and inflammation and converges in inducing CXCL5. Theranostics, 2019, 9, 1181-1199.	10.0	20
5	Co-targeting intracellular pH and essential amino acid uptake cooperates to induce cell death of T-ALL/LL cells. Leukemia and Lymphoma, 2018, 59, 460-468.	1.3	5
6	Iron chelation: an adjuvant therapy to target metabolism, growth and survival of murine PTEN-deficient T lymphoma and human T lymphoblastic leukemia/lymphoma. Leukemia and Lymphoma, 2017, 58, 1433-1445.	1.3	23
7	NF-κB in Hematological Malignancies. Biomedicines, 2017, 5, 27.	3.2	37
8	Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 2016, 128, 253-264.	1.4	320
9	Structure–function insights reveal the human ribosome as a cancer target for antibiotics. Nature Communications, 2016, 7, 12856.	12.8	75
10	Frequency and Dynamics of Leukemia-Initiating Cells during Short-term <i>Ex Vivo</i> Culture Informs Outcomes in Acute Myeloid Leukemia Patients. Cancer Research, 2016, 76, 2082-2086.	0.9	24
11	Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discovery, 2015, 1, 15030.	6.7	56
12	L-type amino-acid transporter 1 (LAT1): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia. Leukemia, 2015, 29, 1253-1266.	7.2	118
13	The BMI1 polycomb protein represses cyclin G2-induced autophagy to support proliferation in chronic myeloid leukemia cells. Leukemia, 2015, 29, 1993-2002.	7.2	56
14	GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-κB-dependent induction of HIF-1α. Leukemia, 2015, 29, 1163-1176.	7.2	55
15	Saccharomyces boulardii Modifies Salmonella Typhimurium Traffic and Host Immune Responses along the Intestinal Tract. PLoS ONE, 2014, 9, e103069.	2.5	36
16	Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Letters, 2013, 333, 76-88.	7.2	47
17	The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Letters, 2013, 336, 114-126.	7.2	60
18	Calpain 2â€dependent lκBα degradation mediates CPTâ€11 secondary resistance in colorectal cancer xenografts. Journal of Pathology, 2012, 227, 118-129.	4.5	25

Veronique Imbert

#	Article	IF	CITATIONS
19	miRâ€483â€3p controls proliferation in wounded epithelial cells. FASEB Journal, 2011, 25, 3092-3105.	0.5	76
20	Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes and Development, 2011, 25, 1245-1261.	5.9	223
21	Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection. PLoS ONE, 2010, 5, e8925.	2.5	82
22	NFâ€₽̂B inhibition triggers death of imatinibâ€sensitive and imatinibâ€resistant chronic myeloid leukemia cells including T315I Bcrâ€Abl mutants. International Journal of Cancer, 2009, 125, 308-317.	5.1	40
23	Inhibition of the NF-κB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-κB essential modulator NEMO. Cell Death and Differentiation, 2008, 15, 152-160.	11.2	26
24	Preclinical targeting of NF-κB and FLT3 pathways in AML cells. Leukemia, 2008, 22, 1466-1469.	7.2	20
25	Pharmacological targeting of NF-κB potentiates the effect of the topoisomerase inhibitor CPT-11 on colon cancer cells. British Journal of Cancer, 2008, 98, 335-344.	6.4	21
26	AS602868, a dual inhibitor of IKK2 and FLT3 to target AML cells. Leukemia, 2007, 21, 877-885.	7.2	31
27	Saccharomyces boulardii Inhibits Inflammatory Bowel Disease by Trapping T Cells in Mesenteric Lymph Nodes. Gastroenterology, 2006, 131, 1812-1825.	1.3	138
28	Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival. Cellular Signalling, 2006, 18, 449-455.	3.6	47
29	Targeting NF-ÂB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood, 2005, 105, 804-811.	1.4	136
30	NF-κB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO Journal, 2005, 24, 128-137.	7.8	141
31	AS602868, a pharmacological inhibitor of IKK2, reveals the apoptotic potential of TNF-α in Jurkat leukemic cells. Oncogene, 2003, 22, 8187-8194.	5.9	70
32	<i>Saccharomyces boulardii</i> Interferes with Enterohemorrhagic <i>Escherichia coli</i> -Induced Signaling Pathways in T84 Cells. Infection and Immunity, 2003, 71, 766-773.	2.2	148
33	Hepatitis C Virus NS5A and Subgenomic Replicon Activate NF-κB via Tyrosine Phosphorylation of IκBα and Its Degradation by Calpain Protease. Journal of Biological Chemistry, 2003, 278, 40778-40787.	3.4	107
34	Enterohemorrhagic Escherichia coli Infection Induces Interleukin-8 Production via Activation of Mitogen-Activated Protein Kinases and the Transcription Factors NF-κB and AP-1 in T84 Cells. Infection and Immunity, 2002, 70, 2304-2310.	2.2	88
35	Blocking NF-κB activation in Jurkat leukemic T cells converts the survival agent and tumor promoter PMA into an apoptotic effector. Oncogene, 2002, 21, 3213-3224.	5.9	46
36	Induction of interleukin-2 receptor alpha (IL-2Ralpha) expression by interleukin-2: important role of the interleukin-2 receptor beta chain region between the two Stat5 docking sites. European Cytokine Network, 2002, 13, 331-9.	2.0	9

#	Article	IF	CITATIONS
37	Ligation of CD11b and CD11c β2 integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1α (MIP-1α) and MIP-1β production in primary human monocytes through a pathway dependent on nuclear factor–κB. Blood, 2001, 97, 2932-2940.	1.4	86
38	Tyrosine phosphorylation-dependent activation of NF-κB. FEBS Journal, 2001, 268, 1508-1515.	0.2	119
39	Engagement of CD11b and CD11c β2 integrin by antibodies or soluble CD23 induces IL-1β production on primary human monocytes through mitogen-activated protein kinase–dependent pathways. Blood, 2000, 95, 3868-3877.	1.4	83
40	Endopeptidase 24.11 (CD10/NEP) is required for phorbol esterâ€induced growth arrest in Jurkat T cells. FASEB Journal, 1997, 11, 869-879.	0.5	24
41	Tyrosine Phosphorylation of lκB-α Activates NF-κB without Proteolytic Degradation of lκB-α. Cell, 1996, 86, 787-798.	28.9	675
42	Immunofluorescent quantification of tyrosine phosphorylation of cellular proteins in whole cells by flow cytometry. Cytometry, 1994, 15, 327-334.	1.8	35