Jun Zeng

List of Publications by Citations

Source: https://exaly.com/author-pdf/8188034/jun-zeng-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 494 13 22 g-index

25 611 6.8 3.52 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. <i>Journal of Proteome Research</i> , 2014 , 13, 3420-31	5.6	94
23	Global Metabolic Profiling Identifies a Pivotal Role of Proline and Hydroxyproline Metabolism in Supporting Hypoxic Response in Hepatocellular Carcinoma. <i>Clinical Cancer Research</i> , 2018 , 24, 474-485	12.9	60
22	Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 190, 450-456	4.4	56
21	Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. <i>Environmental Science & Environmental Science &</i>	10.3	50
20	Metabolomics Identifies Biomarker Pattern for Early Diagnosis of Hepatocellular Carcinoma: from Diethylnitrosamine Treated Rats to Patients. <i>Scientific Reports</i> , 2015 , 5, 16101	4.9	28
19	Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-FeO@MIPs. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 196, 117-122	4.4	26
18	Metabolic Profiling with Gas Chromatography-Mass Spectrometry and Capillary Electrophoresis-Mass Spectrometry Reveals the Carbon-Nitrogen Status of Tobacco Leaves Across Different Planting Areas. <i>Journal of Proteome Research</i> , 2016 , 15, 468-76	5.6	25
17	Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresishass spectrometry. <i>Metabolomics</i> , 2014 , 10, 805-815	4.7	25
16	A New Strategy for Analyzing Time-Series Data Using Dynamic Networks: Identifying Prospective Biomarkers of Hepatocellular Carcinoma. <i>Scientific Reports</i> , 2016 , 6, 32448	4.9	19
15	Investigation on green tea lipids and their metabolic variations during manufacturing by nontargeted lipidomics. <i>Food Chemistry</i> , 2021 , 339, 128114	8.5	19
14	Lipid profiling reveals different therapeutic effects of metformin and glipizide in patients with type 2 diabetes and coronary artery disease. <i>Diabetes Care</i> , 2014 , 37, 2804-12	14.6	18
13	A direct "touch" approach for gold nanoflowers decoration on graphene/ionic liquid composite modified electrode with good properties for sensing bisphenol A. <i>Talanta</i> , 2019 , 191, 400-408	6.2	15
12	SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency. <i>International Journal of Biological Macromolecules</i> , 2018 , 111, 1032-1039	7.9	14
11	Comprehensive Profiling by Non-targeted Stable Isotope Tracing Capillary Electrophoresis-Mass Spectrometry: A New Tool Complementing Metabolomic Analyses of Polar Metabolites. <i>Chemistry - A European Journal</i> , 2019 , 25, 5427-5432	4.8	10
10	Antioxidant Activity of Docosahexaenoic Acid (DHA) and Its Regulatory Roles in Mitochondria. Journal of Agricultural and Food Chemistry, 2021 , 69, 1647-1655	5.7	8
9	A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks. <i>Scientific Reports</i> , 2017 , 7, 14339	4.9	7
8	Emerging lipidome patterns associated with marine Emiliania huxleyi-virus model system. <i>Science of the Total Environment</i> , 2019 , 688, 521-528	10.2	6

LIST OF PUBLICATIONS

7	The Robust Classification Model Based on Combinatorial Features. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2019 , 16, 650-657	3	4
6	Lipidome disturbances in preadipocyte differentiation associated with bisphenol A and replacement bisphenol S exposure. <i>Science of the Total Environment</i> , 2021 , 753, 141949	10.2	4
5	Health risk assessment of heavy metals in shellfish collected from Fujian, China. <i>Human and Ecological Risk Assessment (HERA)</i> , 2020 , 26, 621-635	4.9	2
4	Eicosapentaenoic acid (EPA) exhibits antioxidant activity via mitochondrial modulation. <i>Food Chemistry</i> , 2022 , 373, 131389	8.5	1
3	Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. <i>Journal of Applied Microbiology</i> , 2021 , 131, 257-271	4.7	1
2	Targeting mTORC2/HDAC3 Inhibits Stemness of Liver Cancer Cells Against Glutamine Starvation <i>Advanced Science</i> , 2022 , e2103887	13.6	1
1	Transformation of coccolithophorid Emiliania huxleyi harboring a marine virus (Coccolithoviruses) serine palmitoyltransferase (SPT) gene by electroporation. <i>Journal of Oceanology and Limnology</i> , 2021 , 39, 693-704	1.5	