Anna La Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188025/publications.pdf

Version: 2024-02-01

840776 752698 20 845 11 20 citations h-index g-index papers 23 23 23 1275 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Frontiers in Cell and Developmental Biology, 2022, 10, 831750.	3.7	9
2	Retinal organoids derived from rhesus macaque iPSCs undergo accelerated differentiation compared to human stem cells. Cell Proliferation, 2022, 55, e13198.	5.3	5
3	Solving neurodegeneration: common mechanisms and strategies for new treatments. Molecular Neurodegeneration, 2022, 17, 23.	10.8	83
4	MicroRNA Signatures of the Developing Primate Fovea. Frontiers in Cell and Developmental Biology, 2021, 9, 654385.	3.7	8
5	Effects of Adult MÃ 1 /4ller Cells and Their Conditioned Media on the Survival of Stem Cell-Derived Retinal Ganglion Cells. Cells, 2020, 9, 1759.	4.1	11
6	CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23073-23084.	7.1	9
7	NCAM2 Regulates Dendritic and Axonal Differentiation through the Cytoskeletal Proteins MAP2 and 14-3-3. Cerebral Cortex, 2020, 30, 3781-3799.	2.9	33
8	Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33597-33607.	7.1	19
9	Let-7 regulates cell cycle dynamics in the developing cerebral cortex and retina. Scientific Reports, 2019, 9, 15336.	3.3	30
10	A Novel Reporter Mouse Uncovers Endogenous Brn3b Expression. International Journal of Molecular Sciences, 2019, 20, 2903.	4.1	5
11	Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Developmental Dynamics, 2019, 248, 118-128.	1.8	51
12	RBX2 maintains final retinal cell position in a DAB1-dependent and -independent fashion. Development (Cambridge), 2018, 145, .	2.5	13
13	Molecular Anatomy of the Developing Human Retina. Developmental Cell, 2017, 43, 763-779.e4.	7.0	205
14	Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Translational Vision Science and Technology, 2017, 6, 4.	2.2	72
15	Retinal Differentiation of Mouse Embryonic Stem Cells. Bio-protocol, 2016, 6, .	0.4	1
16	The GIPC1-Akt1 Pathway Is Required for the Specification of the Eye Field in Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 2674-2685.	3.2	15
17	Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Developmental Biology, 2015, 403, 128-138.	2.0	54
18	Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2362-70.	7.1	187

Anna La Torre

#	Article	lF	CITATION
19	Production and Transplantation of Retinal Cells from Human and Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2012, 884, 229-246.	0.9	31
20	The E3 Ubiquitin Ligase CRL5 Regulates Dentate Gyrus Morphogenesis, Adult Neurogenesis, and Animal Behavior. Frontiers in Neuroscience, 0, 16, .	2.8	3