
Samuel Cheeseman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. Journal of Materials Chemistry B, 2022, 10, 7527-7539.	2.9	8
2	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	19
3	The Multiomics Analyses of Fecal Matrix and Its Significance to Coeliac Disease Gut Profiling. International Journal of Molecular Sciences, 2021, 22, 1965.	1.8	6
4	Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS Applied Materials & Interfaces, 2021, 13, 17340-17352.	4.0	24
5	Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches. Molecules, 2021, 26, 3890.	1.7	28
6	Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.	5.8	63
7	Antibacterial Liquid Metals: Biofilm Treatment <i>via</i> Magnetic Activation. ACS Nano, 2020, 14, 802-817.	7.3	198
8	Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. Journal of Materials Chemistry B, 2020, 8, 10776-10787.	2.9	31
9	Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. Journal of Colloid and Interface Science, 2020, 580, 850-862.	5.0	24
10	Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. Nanoscale, 2020, 12, 19888-19904.	2.8	12
11	Combining Chemometrics and Sensors: Toward New Applications in Monitoring and Environmental Analysis. Chemical Reviews, 2020, 120, 6048-6069.	23.0	68
12	Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. Science of the Total Environment, 2020, 732, 138792.	3.9	96
13	Significant Enhancement of Antimicrobial Activity in Oxygen-Deficient Zinc Oxide Nanowires. ACS Applied Bio Materials, 2020, 3, 2997-3004.	2.3	36
14	Antimicrobial Metal Nanomaterials: From Passive to Stimuliâ€Activated Applications. Advanced Science, 2020, 7, 1902913.	5.6	192
15	Interaction of Giant Unilamellar Vesicles with the Surface Nanostructures on Dragonfly Wings. Langmuir, 2019, 35, 2422-2430.	1.6	18
16	PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source. Cancers, 2019, 11, 162.	1.7	20
17	Outsmarting superbugs: bactericidal activity of nanostructured titanium surfaces against methicillin- and gentamicin-resistant <i>Staphylococcus aureus</i> ATCC 33592. Journal of Materials Chemistry B, 2019, 7, 4424-4431.	2.9	39
18	The use of nanomaterials for the mitigation of pathogenic biofilm formation. Methods in Microbiology, 2019, , 61-92.	0.4	31

#	Article	IF	CITATIONS
19	From Academia to Reality Check: A Theoretical Framework on the Use of Chemometric in Food Sciences. Foods, 2019, 8, 164.	1.9	30
20	Antibacterial Properties of Graphene Oxide–Copper Oxide Nanoparticle Nanocomposites. ACS Applied Bio Materials, 2019, 2, 5687-5696.	2.3	57
21	Pillars of Life: Is There a Relationship between Lifestyle Factors and the Surface Characteristics of Dragonfly Wings?. ACS Omega, 2018, 3, 6039-6046.	1.6	19